
Risø–R–1xyz(EN)

Component Manual for the

Neutron Ray-Tracing Package

McStas,

Version 1.8

Peter Kjær Willendrup, Kim Lefmann, and Emmanuel Farhi

Risø National Laboratory, Roskilde, Denmark
October 2004

Abstract

The software package McStas is a tool for carrying out Monte Carlo ray-tracing
simulations of neutron scattering instruments with high complexity and precision. The
simulations can compute all aspects of the performance of instruments and can thus
be used to optimize the use of existing equipment, design new instrumentation, and
carry out virtual experiments. McStas is based on a unique design where an automatic
compilation process translates high-level textual instrument descriptions into efficient
ANSI-C code. This design makes it simple to set up typical simulations and also gives
essentially unlimited freedom to handle more unusual cases.

This report constitutes the component manual for McStas, and, together with the
manual for the McStas system, it contains full documentation of all aspects of the
program. It covers a description of all official components of the McStaspackage with
some theoretical background. Further, it describes selected test instruments and show
representative McStassimulations performed with these instruments.

This library component report documents McStasversion 1.8, released May 15th, 2003

The authors are:

Kim Lefmann <kim.lefmann@risoe.dk>

Materials Research Department, Risø National Laboratory, Roskilde, Denmark

Peter Kjær Willendrup <peter.willendrup@risoe.dk>

Materials Research Department, Risø National Laboratory, Roskilde, Denmark

Emmanuel Farhi <farhi@ill.fr>
Institut Laue-Langevin, Grenoble, France

Mark Hagen <mhz@ansto.gov.au>

Australian Nuclear Science and technology Organization, Sydney, Australia

as well as authors who left the project:

Per-Olof Åstrand <per-olof.aastrand@risoe.dk>

Materials Research Department, Risø National Laboratory, Roskilde, Denmark

Kristian Nielsen <kn@sifira.dk>

Materials Research Department, Risø National Laboratory, Roskilde, Denmark
Present address: Sifira A/S, Copenhagen, Denmark,

and many users that have contributed to components of the McStaslibrary.

ISBN 87–550–2929–9
ISBN 87–550–2930–2 (Internet)
ISSN 0106–2840

Pitney Bowes Management Services Denmark A/S · Risø National Laboratory · 2004

Contents

Preface and acknowledgements 6

1 Introduction to McStas 7

1.1 Background . 7

1.1.1 The goals of McStas . 8

1.2 The design of McStas . 8

1.3 Overview . 10

2 New features in McStas versions 1.7 - 1.8 11

2.1 General . 11

2.2 Kernel . 11

2.3 Run-time . 12

2.4 Components and Library . 13

2.5 Documentation . 14

2.6 Example instruments . 14

2.7 Tools, installation . 15

2.8 Future extensions . 16

3 About the component library 17

4 Source components 18

4.1 Source flat: A circular continuous source with a flat energy spectrum 18

4.2 Source flux: A circular continuous source with a flat energy spectrum and
absolute flux . 19

4.3 Source flat lambda: A continuous source with flat wavelength spectrum . . 19

4.4 Source flux lambda: A continuous source with a flat wavelength spectrum
and absolute flux . 19

4.5 Source div: A divergent source . 20

4.6 Moderator: A time-of-flight source . 20

4.7 Source adapt: A neutron source with adaptive importance sampling 21

4.7.1 The adaption algorithm . 21

4.7.2 The implementation . 23

4.8 Source Optimizer: A general Optimizer for McStas 24

4.8.1 The optimization algorithm . 24

4.8.2 Using the Source Optimizer . 25

Risø–R–1xyz(EN) 3

5 Simple optical components: Arms, slits, collimators, filters 26

5.1 Arm: The generic component . 26

5.2 Slit: The rectangular slit . 26

5.3 Circular slit: The circular slit . 27

5.4 Beamstop rectangular: The rectangular beam stop 27

5.5 Beamstop circular: The circular beam stop 27

5.6 Soller: The simple Soller blade collimator 27

5.7 Filter: A transmission filter . 29

6 Advanced optical components: mirrors and guides 30

6.1 Mirror reflectivity . 30

6.2 Mirror: The single mirror . 31

6.3 Guide: The guide section . 31

6.4 Channeled guide: A guide section component with multiple channels 33

7 Chopper-like components 34

7.1 V selector: The rotating velocity selector 34

7.2 Chopper: The disc chopper . 35

7.3 First chopper: The first disc chopper . 36

8 Detectors and monitors 38

8.1 Monitor: The single monitor . 38

8.2 Monitor 4PI: The 4π monitor . 38

8.3 PSD monitor: The PSD monitor . 39

8.4 PSD monitor 4PI: The 4π PSD monitor . 39

8.5 PSD monitor 4PI log: The 4π PSD monitor with log scale 39

8.6 TOF monitor: The time-of-flight monitor 39

8.7 E monitor: The energy sensitive monitor . 40

8.8 L monitor: The wavelength sensitive monitor 40

8.9 Divergence monitor: The divergence sensitive monitor 40

8.10 DivPos monitor: The divergence-position sensitive monitor 41

8.11 DivLambda monitor: The divergence-wavelength sensitive monitor 41

8.12 Monitor nD: A general Monitor for 0D/1D/2D records 41

8.13 Res monitor: The resolution monitor . 44

8.14 Adapt check: The simple adaptive importance sampling monitor 45

8.15 Monitor Optimizer: Optimization locations for the Source Optimizer com-
ponent . 45

9 Bragg scattering single crystals, monochromators 46

9.0.1 Mosaic simple: An infinitely thin mosaic crystal with a single scat-
tering vector . 46

9.0.2 Mosaic anisotropic: The crystal with anisotropic mosaic 49

9.0.3 Single crystal: The single crystal component 49

4 Risø–R–1xyz(EN)

10 Powder-like sample components 57
10.0.4 Weight transformation in samples; focusing 57

10.1 V sample: An incoherent scatterer, the V-sample 58
10.2 Powder1: A general powder sample . 59

10.2.1 General considerations . 59
10.2.2 This implementation . 62

11 Inelastic scattering kernels 63
11.1 Res sample: A uniform scatterer for resolution calculation 63

11.1.1 Background . 64

12 Instrument examples 66
12.1 A test instrument for the component V sample 66

12.1.1 Scattering from the V-sample test instrument 66
12.2 The triple axis spectrometer TAS1 . 66

12.2.1 Simulated and measured resolution of TAS1 68
12.3 The time-of-flight spectrometer PRISMA 70

12.3.1 Simple spectra from the PRISMA instrument 72

A Libraries and conversion constants 74
A.1 Run-time calls and functions . 74

A.1.1 Neutron propagation . 74
A.1.2 Coordinate and component variable retrieval 75
A.1.3 Coordinate transformations . 76
A.1.4 Mathematical routines . 77
A.1.5 Output from detectors . 77
A.1.6 Ray-geometry intersections . 78
A.1.7 Random numbers . 78

A.2 Reading a data file into a vector/matrix (Table input) 78
A.3 Monitor nD Library . 80
A.4 Adaptative importance sampling Library . 80
A.5 Vitess import/export Library . 80
A.6 Constants for unit conversion etc. 81

B The McStas terminology 82

Bibliography 83

Index and keywords 83

Risø–R–1xyz(EN) 5

Preface and acknowledgements

This document contains information on the neutron scattering components which are the
building blocks for describing instruments in the Monte Carlo neutron ray-tracing program
McStas version 1.8. This is an update to the initial release in October 1998 of version
1.0 as presented in Ref. [1]. The reader of this document is not supposed to have specific
knowledge of neutron scattering, but some basic understanding of the underlying physics
is helpful in understanding the theoretical background for the component functionality.
For details about simulation techniques, we refer to the McStas system manual [2]. We
assume familiarity with the use of the C programming language.

We especially like to thank Kristian Nielsen for laying a solid foundation for the McStas
system, which the authors of this manual are using daily. It is also a pleasure to thank
Prof. Kurt N. Clausen for his continuous support to McStas and for having initiated the
project. We have also benefited from discussions with many other people in the neutron
scattering community, too numerous to mention here.

The users who contributed components to this manual are acknowledged as authors
of the individual components. We encourage other users to contribute components with
manual entries for inclusion in future versions of McStas.

In case of any errors, questions, suggestions, do not hesitate to contact the authors at
mcstas@risoe.dk or consult the McStas WWW home page [3].

Important developments on the component side in McStas version 1.8 as compared to
version 1.4 (the last version of the component manual) are listed in section 2.4.

This project has been supported by the European Union, initially through the “XENNI”
network and “Cool Neutrons” RTD program, later through the “SCANS” network, and
today the “MCNSI“ network package.

If you appreciate this software, please subscribe to the neutron-mc@risoe.dk email
list, send us a smiley message, and contribute to the package.

6 Risø–R–1xyz(EN)

Chapter 1

Introduction to McStas

Efficient design and optimization of neutron spectrometers are formidable challenges.
Monte Carlo techniques are well matched to meet these challenges. When McStas version
1.0 was released in October 1998, except for the NISP/MCLib program [4], no exist-
ing package offered a general framework for the neutron scattering community to tackle
the problems currently faced at reactor and spallation sources. The McStas project was
designed to provide such a framework.

McStas is a fast and versatile software tool for neutron ray-tracing simulations. It is
based on a meta-language specially designed for neutron simulation. Specifications are
written in this language by users and automatically translated into efficient simulation
codes in ANSI-C. The present version supports both continuous and pulsed source instru-
ments, and includes a library of standard components with in total around 90 components.
These enable to simulate all kinds of neutron scattering instruments (diffractometers,
triple-axis, reflectometers, time-of-flight, small-angle, back-scattering,...).

The McStas package is written in ANSI-C and is freely available for down-load from
the McStas web-page [3]. The package is actively being developed and supported by Risø
National Laboratory and the Institut Laue Langevin. The system is well tested and is
supplied with several examples and with an extensive documentation, including a separate
component manual.

1.1 Background

The McStas project is the main part of a major effort in Monte Carlo simulations for
neutron scattering at Risø National Laboratory. Simulation tools were urgently needed,
not only to better utilize existing instruments (e.g. RITA-1 and RITA-2 [5–7]), but also
to plan completely new instruments for new sources (e.g. the Spallation Neutron Source,
SNS [8] and the European Spallation Source, ESS [9]). Writing programs in C or Fortran
for each of the different cases involves a huge effort, with debugging presenting particularly
difficult problems. A higher level tool specially designed for the needs of simulating neutron
instruments is needed. As there was no existing simulation software that would fulfill our
needs, the McStas project was initiated. In addition, the ILL required an efficient and
general simulation package in order to achieve renewal of its instruments and guides. A
significant contribution to both the component library and the McStas kernel itself was

Risø–R–1xyz(EN) 7

developed at the ILL and included in the package, in agreement with the original McStas
authors.

1.1.1 The goals of McStas

Initially, the McStas project had four main objectives that determined the design of the
McStas software.

Correctness. It is essential to minimize the potential for bugs in computer simulations.
If a word processing program contains bugs, it will produce bad-looking output or may
even crash. This is a nuisance, but at least you know that something is wrong. However,
if a simulation contains bugs it produces wrong results, and unless the results are far off,
you may not know about it! Complex simulations involve hundreds or even thousands of
lines of formulae, making debugging a major issue. Thus the system should be designed
from the start to help minimize the potential for bugs to be introduced in the first place,
and provide good tools for testing to maximize the chances of finding existing bugs.

Flexibility. When you commit yourself to using a tool for an important project, you need
to know if the tool will satisfy not only your present, but also your future requirements.
The tool must not have fundamental limitations that restrict its potential usage. Thus the
McStas systems needs to be flexible enough to simulate different kinds of instruments (e.g.
triple-axis, time-of-flight and possible hybrids) as well as many different kind of optical
components, and it must also be extensible so that future, as yet unforeseen, needs can
be satisfied.

Power. “Simple things should be simple; complex things should be possible”. New ideas
should be easy to try out, and the time from thought to action should be as short as
possible. If you are faced with the prospect of programming for two weeks before getting
any results on a new idea, you will most likely drop it. Ideally, if you have a good idea at
lunch time, the simulation should be running in the afternoon.

Efficiency. Monte Carlo simulations are computationally intensive, hardware capacities
are finite (albeit impressive), and humans are impatient. Thus the system must assist in
producing simulations that run as fast as possible, without placing unreasonable burdens
on the user in order to achieve this.

1.2 The design of McStas

In order to meet these ambitious goals, it was decided that McStas should be based on
its own meta-language, specially designed for simulating neutron scattering instruments.
Simulations are written in this meta-language by the user, and the McStas compiler au-
tomatically translates them into efficient simulation programs written in ANSI-C.

In realizing the design of McStas, the task was separated into four conceptual layers:

8 Risø–R–1xyz(EN)

1. Modeling the physical processes of neutron scattering, i.e. the calculation of the
fate of a neutron that passes through the individual components of the instrument
(absorption, scattering at a particular angle, etc.)

2. Modeling of the overall instrument geometry, mainly consisting of the type and
position of the individual components.

3. Accurate calculation, using Monte Carlo techniques, of instrument properties such
as resolution function from the result of ray-tracing of a large number of neutrons.
This includes estimating the accuracy of the calculation.

4. Presentation of the calculations, graphical or otherwise.

Though obviously interrelated, these four layers can be treated independently, and this
is reflected in the overall system architecture of McStas. The user will in many situations
be interested in knowing the details only in some of the layers. For example, one user may
merely look at some results prepared by others, without worrying about the details of the
calculation. Another user may simulate a new instrument without having to reinvent the
code for simulating the individual components in the instrument. A third user may write
an intricate simulation of a complex component, e.g. a detailed description of a rotating
velocity selector, and expect other users to easily benefit from his/her work, and so on.
McStas attempts to make it possible to work at any combination of layers in isolation by
separating the layers as much as possible in the design of the system and in the meta-
language in which simulations are written.

The usage of a special meta-language and an automatic compiler has several advan-
tages over writing a big monolithic program or a set of library functions in C, Fortran,
or another general-purpose programming language. The meta-language is more powerful ;
specifications are much simpler to write and easier to read when the syntax of the speci-
fication language reflects the problem domain. For example, the geometry of instruments
would be much more complex if it were specified in C code with static arrays and pointers.
The compiler can also take care of the low-level details of interfacing the various parts of
the specification with the underlying C implementation language and each other. This
way, users do not need to know about McStas internals to write new component or instru-
ment definitions, and even if those internals change in later versions of McStas, existing
definitions can be used without modification.

The McStas system also utilizes the meta-language to let the McStas compiler generate
as much code as possible automatically, letting the compiler handle some of the things
that would otherwise be the task of the user/programmer. Correctness is improved by
having a well-tested compiler generate code that would otherwise need to be specially
written and debugged by the user for every instrument or component. Efficiency is also
improved by letting the compiler optimize the generated code in ways that would be time-
consuming or difficult for humans to do. Furthermore, the compiler can generate several
different simulations from the same specification, for example to optimize the simulations
in different ways, to generate a simulation that graphically displays neutron trajectories,
and possibly other things in the future that were not even considered when the original
instrument specification was written.

The design of McStas makes it well suited for doing “what if. . . ” types of simulations.
Once an instrument has been defined, questions such as “what if a slit was inserted”,

Risø–R–1xyz(EN) 9

“what if a focusing monochromator was used instead of a flat one”, “what if the sample
was offset 2 mm from the center of the axis” and so on are easy to answer. Within minutes
the instrument definition can be modified and a new simulation program generated. It
also makes it simple to debug new components. A test instrument definition may be
written containing a neutron source, the component to be tested, and whatever detectors
are useful, and the component can be thoroughly tested before being used in a complex
simulation with many different components.

The McStas system is based on ANSI-C, making it both efficient and portable. The
meta-language allows the user to embed arbitrary C code in the specifications. Flexibility
is thus ensured since the full power of the C language is available if needed.

1.3 Overview

This McStas Component Manual consists of the following major parts:

• A short list of new features introduced in this McStas release appears in chapter 2

• A list of available components from the library in chapter 3, sorted by categories.

• A list of example instruments from the library in chapter 12.

• The McStas library functions and definitions that aid in the writing of simulations
and components are descripbed in appendix A.

An explanation of McStas terminology can be found in appendix B, and a list of library
calls that may be used in component definitions appears in appendix A of the Manual.

Plans for future extensions are presented on the McStas web-page [3].

10 Risø–R–1xyz(EN)

Chapter 2

New features in McStas versions
1.7 - 1.8

Many new features have been implemented in McStas version 1.8 since version 1.5 (no
version 1.6. manual was written, the most important being that McStas can now compile
and run in a Windows enviroment. The list of changes given here may be particularly
useful to experienced McStas users who do not wish to read the whole manual, searching
only for new features. A global upward compatibility exists for all changes, and thus all
previous components and instruments should work as before. Changes are labelled as 1.7
or 1.8 to indicate in which McStas version they appeared.

Important note for Windows users: It is a known problem that some of the McStas
tools do not support filenames / directories with spaces. We are working on a more general
approach to this problem, which will hopefully be solved in the next release.

2.1 General

As of McStas version 1.8 the license covering the McStas package is the GNU General
Pubclic License. See http://www.gnu.org for details.

2.2 Kernel

The following changes concern the ’Kernel’ (i.e. the McStas meta-language and program).
See the dedicated chapter in the User manual for more details.

• McStas can now compile for Windows!

• Instrument parameters may now have default values, the same way as components
do (appeared in 1.8).

• An instrument source file may contain EXTEND %{ . . . }% C blocks just after the
usual AT . . . ROTATED . . . keywords, to extend the behaviour of existing components,
without touching their code. All local component variables are available. This may
for instance be used to add a new ’color’ to neutrons, i.e. assign a new characteristic
variable to the neutron (appeared in 1.7).

Risø–R–1xyz(EN) 11

• Component instances in an instrument file may be GROUP’ed into exclusive assembly,
i.e. only one component of the group will intercept the neutron ray, the rest will be
skipped. This is useful for multi monochromators multi detectors, multiple collima-
tors, etc. After the ROTATED keyword, the keyword GROUP should be added followed
by a group name (e.g. GROUP MyGroup) (appeared in 1.7).

• The instrument and components may have string (char*) setting parameters. For
components, their length is limited to 1024 characters (appeared in 1.7).

• In both components and instruments, the FINALLY section, that is executed at the
end of simulations, has been supplemented with a new SAVE section. This latter is
executed at simulation end (just before the FINALLY section), but also each time an
intermediate save is required (e.g. when a ’kill -USR2 $pid’ is used under Unix, see
section 2.3) (appeared in 1.7).

• Components may have a SHARE section, which is imported only once per type of
component. SHARE has the same role as DECLARE, but is useful when several instances
of the same component is used in a single simulation (appeared in 1.7).

• The component files may have some %include inside ’%{ }%’ DECLARE or SHARE

C blocks. The files to include are searched locally, and then in the library. If an
extension is found, only the specified file is included, else both .h and .c are embedded
unless the –no-runtime has been specified. As in previous releases, the instrument
files can embed external files, both in C blocks and in the instrument parts (DECLARE,
etc.) (appeared in 1.7).

• The PREVIOUS keyword, to be used after RELATIVE in place of component instance
names refers to the preceeding component, and does not require to actually know its
name. Similarly the PREVIOUS(n) keyword refers to the n-th preceeding component
(appeared in 1.8).

2.3 Run-time

Some important modifications were done to the ’Run-time’ library (i.e. the functions used
in the instrument program). Some details may be found in Running chapter of the User
manual as well as in the appendix A.

• A global gravitation handling is now available, by setting the -g flag.

• Many output formats are available for data. Use the --format="format" flag, e.g.
--format="Scilab". The default format is McStas/PGPLOT, but may be specified
globally using the MCSTAS_FORMAT environment variable. See section ?? for details
(appeared in 1.7).

• It is possible to save 3D data arrays, by calling the DETECTOR OUT 3D macro.
(handled as 2D by mcplot by ignoring the 3rd dimension) (appeared in 1.7).

• The C type of the ’number of events’ array in monitors (usually named L_N) was
changed from int to double, to avoid overflow. All ’home-made’ monitors should
be updated accordingly (appeared in 1.7).

12 Risø–R–1xyz(EN)

• The USR2 signal generates an intermediate save for all monitors, during the simula-
tion (executes the SAVE section). The USR1 signal still gives informations (appeared
in 1.7).

• New randvec_target_rect and randvec_target_rect_angular functions now fo-
cus on a rectangle (more efficient than the former randvec_target_sphere) (ap-
peared in 1.7 and 1.8).

2.4 Components and Library

We here list some of the new components (found in the McStas lib directory) which are
detailed in the Component manual, also mentioned in the Component Overview of the
User Manual.

• All components now have a valid header for mcdoc automatic documentation, as well
as usage example.

• contrib This directory now contains contributed components. Those that will be
found to be highly stable will then go into the other component categories. Con-
tributed components (Guide_honeycomb, Guide_tapering, Guide_curved, ISIS_moderator)
have been placed there (appeared in 1.7 and 1.8).

• data This directory now contains example data files mainly for Laue diffraction,
transmission and reflection files.

• doc The documentation is now included in the doc directory.

• example A new example directory contains instrument examples, available from the
mcgui ’Neutron site’ menu Tool.

• misc Updated Vitess_input and Vitess_output components according to Vitess
¿= 2.3 Neutron structure.

• misc A Progress_bar component may be positioned anywhere in the simulation and
displays the simulation percentage. It may also save temporary data files regularly
so that one can have a look (using mcplot) at the results on-the-fly before the end
of the simulation.

• monitorsThe Monitor_nD component may be used as a replacement for all monitors.
It may have automatic limits mode for either all or selected monitored variables. It
may also plot banana monitors for mcdisplay and monitor something else than the
intensity, e.g. the mean energy on a XY psd (appeared in 1.7). A bug (atan2) was
corrected in PSD_monitor_4PI.

• obsolete Some components were renamed by categories for better sorting. Old
components are still available, but not maintained anymore. We highly encourage
to avoid using these when writing new instrument definitions.

• optics components were renamed by categories, starting with Guide . . . , Monochro-
mator . . . , Filter . . . etc so that sorting is easier (appeared in 1.7).

Risø–R–1xyz(EN) 13

• optics Monochromator curved can read reflectivity and transmission tables (ap-
peared in 1.7).

• optics Guide gravity can handle a 2D array of channels, and has options for sub-
divisions in length, chamfers and wavyness.

• optics Filter gen can read a table from a file and affect the neutron beam (replaces
the obsolete Flux_adapter). It may act as a filter or a source (appeared in 1.7).

• opticsBugs were corrected in the following components: Bender, Chopper, Guide channeled.
Some similar components were gathered. New components were added: Guide gravity,
Guide wavy, Filter gen.

• samples can now target towards any component, given its index (no need to compute
target_x|y|z vector, use e.g. target_index=1). Position an Arm at the focusing
position when targetting to centered components (appeared in 1.7).

• samples Rectangular focusing has been implemented (instead of circular) in most
components. More sample shapes are available. A bug has been corrected in Sin-
gle crystal. A Powder2 component (2 rings) has been added. Sans spheres is a new
sample component for small angle scattering. Phonon simple is a new sample for
phonon scattering. (appeared in 1.8).

• share Many dedicated libraries are now available as shared code for reading tables,
handling data files and monitors. These are C functions to be %included into
components (see e.g. MCSTAS/monitors/Monitor_nD.comp) (appeared in 1.7).

• sources The Source_gen and Source_Maxwell_3 components may now simulate all
kinds of continuous neutron sources. Some bugs were corrected in most sources in or-
der to have an isotropic neutron emission. The Virtual_input and Virtual_output

may load and save neutron event files (beware the size of the generated files !). For-
mat may be text or binary (appeared in 1.7).

2.5 Documentation

As of McStas 1.8 an improved tutorial has been integrated into to the graphical user
interface of McStasṪhe content of the tutorial is also available in appendix ??.

2.6 Example instruments

As mentioned above, McStas 1.8 has various improvements regarding distribution of instru-
ments. Firstly, mcgui has a new special menu for instruments distributed with McStasand
secondly instruments can now have default values and thirdly a new McStas tutorial has
integrated into the user interface. These three new features together proves a solid start-
ing point for new users of McStasṪo further increase the value of the package, we have
decided to include selveral example instruments contributed by McStas users. The full list
of example instruments are

14 Risø–R–1xyz(EN)

• vanadium_example, improved version used in the McStas tutorial.

• linup-1-linup-7, legacy instruments of the Risø TAS1 instrument from a historical
release of McStas.

• h8_test, model of the Brookhaven H8 triple-axis, written by McStas team member
Emmanuel Farhi

• ILL_D9, a model of the ILL D9 hot four-circle diffractometer, contributed by Chris
Ling

• Hetfull, a model of the ISIS HET spectrometer, contributed by Dickon Champion

• focus_psi, a model of the PSI FOCUS spectrometer, contributed by Uwe Filges

• prisma2, a model of the ISIS prisma2 spectrometer, written by Kristian Nielsen and
Mark Hagen from a historical release of McStas.

• Test instruments ISIStest for testing the new ISIS_moderator component, SANS
for testing the new Sans_spheres component and Test_Phonon for testing the new
Phonon_simple component, all contributed by the corresponding component au-
thors.

2.7 Tools, installation

A renewal of most McStas Tools, used to edit and display instrument or results, has
been undertaken, aiming at proposing alternatives to the Perl+PerlTk+PGPLOT+PDL
libraries.

Quite a lot of work was achieved in order to solve the installation problems that
have been encoutered so far. A fully working McStas distribution now only requires a C
compiler, perl, perl-Tk and one of Matlab, Scilab and (PGPLOT, perl-DL). The Plotlib
Scilab library has been included in the package, and does not need to be installed separately
anymore.

This has improved significantly the portability of McStas and thus simplified the in-
stallation of the package. Details about the installation and the available tools are given
in the Installing McStas chapter of the User Manual.

• The list of required packages for a complete McStas installation is now a C compiler,
Perl, PerlTk and Scilab or Matlab.

• Matlab, Scilab and IDL may read directly McStas results if the simulation was
executed with the --format="..." option (see 2.3 changes). The former PGPLOT
interface is still supported (appeared in 1.7).

• mcgui can now perform mcrun-like parameter scans directly from the gui (appeared
in 1.8).

• mcgui has now a ’Neutron site’ menu which enables to load directly one of the
instrument examples (appeared in 1.8).

Risø–R–1xyz(EN) 15

• mcrun can generate scan results in all formats (appeared in 1.8).

• mcrun has a McStas self test procedure available (appeared in 1.8).

• mcplot, mcdisplay, mcgui are now less dependent on the perl/PDL/pgplot installed
versions and fully work with Matlab/Scilab (appeared in 1.7).

• mcplot can plot a single simulation data file.

• mcplot, mcresplot, mcdisplay can output GIF, PS and color PS files. They also
have integrated help (-h options), and may generate output files in a non interactive
mode (read data, create output file, exit) (appeared in 1.7).

• mcplot and mcdisplay work with Matlab, PGPLOT and Scilab plotters (depends
on the MCSTAS_FORMAT environment variable, or -pPLOTTER option, or PGPLOT
if not set) (appeared in 1.7).

• mcplot may display parameter scan step results in all formats (appeared in 1.8).

• mcstas2vitess enables to convert a McStas component into a Vitess [10] one (ap-
peared in 1.7).

• mcresplot can plot projections of the 4D resolution function of an instrument ob-
tained from the Res_sample and Res_monitor components. In version 1.8, it only
works with the McStas/PGPLOT format, but a port for Scilab/Matlab is under way
(appeared in 1.7).

• mcdoc can now display the pdf version of the manual, an HTML catalog of the
current library, as well as help for single components. The mcdoc functions have
been closely integrated into mcgui (appeared in 1.7).

• mcdoc can document automatically instruments in the same way as components
(appeared in 1.8).

• mcconvert is a new tool to convert McStas result text files from Matlab to Scilab,
and from Scilab to Matlab formats (appeared in 1.8).

2.8 Future extensions

The following features are planned for the oncoming releases of McStas:

• Support for Matlab and Scilab in mcresplot.

• Support for MPI (parallel processing library) in the runtime

• Language extension ’JUMP’ for enabeling loops, ’teleporting’ etc. in instrument
descriptions.

• Concentric components.

• Polarised components and magnetic field computation components.

• Optimize a set of parameters for a better flux and/or resolution on a given monitor.

16 Risø–R–1xyz(EN)

Chapter 3

About the component library

The component library is maintained by the McStas system group. A number of basic
components “belongs” the McStas system, while other are contributed by specific authors,
mentioned along with each component.

Users are encouraged to send contributions to us for inclusion in future releases.
In the description of the theory behind the component functionality we will use the

usual symbols r for the position (x, y, z) of the particle (unit m), and v for the particle
velocity (vx, vy, vz) (unit m/s). Another frequently used symbol is the wave vector k =
mNv/~ , where mN is the neutron mass. k is usually given in Å−1, while neutron energies
are given in meV. In general, vectors are denoted by boldface symbols. Subscripts ”i”
and ”f” denotes “initial” and “final”, respectively, and are used in connection with the
neutron state before and after an interaction with a component. Note that all mentioning
of component geometry refer to the local coordinate system of the individual component,
in which the z axis is along propagation axis, the y axis is vertical up, and the x completes
the direct coordinate system.

Source code for all component may be found in the lib/mcstas/ subdirectory of the
McStas installation; the default is /usr/local/lib/mcstas/ on Unix-like systems and
C:\mcstas\lib on Windows systems, but it can be changed to something else using the
MCSTAS environment variable.

As a complement to this Component Manual, we encourage users to use the mcdoc

front-end which enables to display both the catalog of the McStas library, e.g using:

mcdoc --show

as well as the documentation of specific components, e.g with:

mcdoc --text name
mcdoc --show file.comp

The first line will search for all components matching the name, and display their help
section as text, whereas the second example will display the help corresponding to the
file.comp component, using your BROWSER setting, or as text if unset. The --help

option will display the command help, as usual.
An overview of the component library is also given at the McStas home page...

Risø–R–1xyz(EN) 17

Chapter 4

Source components

The main function of the source components is to determine a set of initial parameters
(r,v), or equivalent (r, v,Ω), for each neutron. This is done by Monte Carlo choices. In
the current sources no polarization dependence is implemented, whence we let s = (0, 0).

The sources to be presented in the following all make their Monte Carlo choices for
initial position and direction on the basis of a uniform distribution, with the exception
of Souce Div, where the distribution of initial divergence (deviation between the nominal
and actual direction) is Gaussian. The shape of the source may be a disk (Moderator,
Source adapt, Source flat and Source flux), a rectangle (Source div), a cube (ESS sources,
Source Maxwell 3)or even a box/cylinder (Source gen). The choice of energy distribu-
tion varies from a flat distribution in Source flat, to the more realistic weighted sum of
three Maxwellians in Source Maxwell 3 and Source gen. As neutron energy is in principle
unlimited, all sources require energy/wavelength windows to be specified.

For time-of-flight sources, the initial neutron time, t (in s), is an essential parame-
ter. The choice of this is being made on basis of detailed analytical expressions, see the
respective components. For other sources, the initial neutron time is set to zero.

The flux of the sources deserves special attention. The total flux is defined as the
sum of weights of all emitted neutron rays during one simulation (the unit of weight is
thus neutrons per second), if all neutron energies were allowed. In most sources, the total
flux is a required parameter. For the simple sources Source flat and Source flat lambda
(mostly used for test purposes), the flux may be omitted. In this case the total integrated
flux is set to unity.

4.1 Source flat: A circular continuous source with a flat
energy spectrum

Name: Source flat

Author: System

Input parameters rs, zf , w, h, E0, ∆E

Optional parameters None

This component is a simple continuous source with a energy distribution which is
uniform in the range E0 −∆E to E0 + ∆E. The component is not used for time-of-flight

18 Risø–R–1xyz(EN)

simulations, so we put t = 0 for all neutron rays.

The initial neutron ray position is chosen randomly from within a circle of radius rs

in the z = 0 plane. This geometry is a fair approximation of a cylindrical cold/thermal
source with the beam going out along the cylinder axis.

The initial neutron ray direction is focused within a solid angle, defined by a rectangular
target of width w, height h, parallel to the xy plane placed at (0, 0, zf).

The total weight of the neutron beam is set to the solid angle of the focusing opening
divided by 4π.

4.2 Source flux: A circular continuous source with a flat
energy spectrum and absolute flux

4.3 Source flat lambda: A continuous source with flat wave-
length spectrum

Name: Source flat lambda

Author: System

Input parameters radius, dist, xw, yh, lambda 0, d lambda

Optional parameters None

The component Source flat lambda is similar to the Source flat component, except
that the spectrum is flat in wavelength, rather than in energy.

The input parameters for Source flat lambda are radius to set the source radius; dist,
xw, and yh to set the focusing as for Source flat; and lambda 0 and d lambda to set the
range of wavelength emitted (the range will be from lambda 0 − d lambda to lambda 0 +
d lambda).

IN GENERAL: HOW DO WE HANDLE MATH SYMBOLS IN THE COMPONENT
DESCIPTIONS? THE FIRST TWO COMPONENT DESCRIPTIONS ARE WIDELY
DIFFERENT!

4.4 Source flux lambda: A continuous source with a flat
wavelength spectrum and absolute flux

The component Source flux lambda is a variation on the Source flat lambda compo-
nent. The only difference is the possibility to specify the absolute flux of the source. The
specified flux is used to adjust the initial neutron weight so that the intensity in the de-
tectors is directly comparable to a measurement of one second on a real source with the
same flux. This also makes the simulated detector intensities independent of the number
of neutron histories simulated, easing the comparison between different simulation runs
(though of course more neutron histories will give better statistics).

The flux Φ is the number of neutrons emitted per second from a one cm2 area on the
source surface, with direction within a a one steradian solid angle, and with wavelength
within a one Ångstrøm interval. The total number of neutrons emitted towards a given

Risø–R–1xyz(EN) 19

diaframe in one second is therefore

Ntotal = ΦAΩ∆λ

where A is the source area, Ω is the solid angle of the diaframe as seen from the source
surface, and ∆λ is the width of the wavelength interval in which neutrons are emitted (as-
suming a uniform wavelength spectrum). If Nsim denotes the number of neutron histories
to simulate, the initial neutron weight p0 must be set to

p0 =
Ntotal

Nsim
=

Φ

Nsim
AΩ∆λ

The input parameters for Source flux lambda are radius to set the source radius in
meters; dist, xw, and yh to set the focusing as for Source flat; lambda 0 and d lambda
to set the range of wavelength emitted (the range will be from lambda 0 − d lambda to
lambda 0 + d lambda); and flux to set the source flux in units of cm−2st−1Å.

4.5 Source div: A divergent source

Source div is a rectangular source which emits a beam of a certain divergence around the
main exit direction (the direction of the z axis). The beam intensity and divergence are
uniform over the whole of the source, and the energy distribution of the beam is uniform.

This component may be used as a simple model of the beam profile at the end of a
guide or at the sample position.

The input parameters for Source div are the source dimensions w and h (in m), the
divergencies δh and δv (FWHM in degrees), and the mean energy E0 and the energy spread
dE (both in meV). The neutron energy range is (E0 − dE;E0 + dE).

4.6 Moderator: A time-of-flight source

The simple time-of-flight source component Moderator resembles the source component
Source flat described in ??. Like Source flat, Moderator is circular and focuses on a
rectangular target. Further, the initial velocity is chosen with a linear distribution within
an interval, defined by the minimum and maximum energies, E0 and E1, respectively.

The initial time of the neutron is determined on basis of a simple heuristical model for
the time dependence of the neutron intensity from a time-of-flight source. For all neutron
energies, the flux decay is assumed to be exponential,

Ψ(E, t) = exp(−t/τ(E)), (4.1)

where the decay constant is given by

τ(E) =

{

τ0 ;E < Ec

τ0/[1 + (E −Ec)
2/γ2] ;E ≥ Ec

(4.2)

The input parameters for Moderator are the source radius, rs, the minimum and
maximum energies, E0 and E1 (in meV), the distance to the target, zf , the dimensions of
the target, w and h, and the decay parameters τ0 (in µs), Ec, and γ (both in meV).

20 Risø–R–1xyz(EN)

4.7 Source adapt: A neutron source with adaptive impor-
tance sampling

The Source adapt component is a neutron source that uses adaptive importance sam-
pling to improve the efficiency of the simulations. It works by changing on-the-fly the
probability distributions from which the initial neutron state is sampled so that samples
in regions that contribute much to the accuracy of the overall result are preferred over
samples that contribute little. The method can achive improvements of a factor of ten
or sometimes several hundred in simulations where only a small part of the initial phase
space contains useful neutrons.

The physical characteristics of the source are similar to those of Source flat (see sec-
tion ??). The source is a thin rectangle in the X-Y plane with a flat energy spectrum in a
user-specified range. The flux per area per steradian per Ångstrøm per second is specified
by the user; the total weight of neutrons emitted from the source will then be the same
irrespectively of the number of neutron histories simulated, corresponding to one second
of measurements.

The initial neutron weight is given by (see section 4.4 for details)

p0 =
Ntotal

Nsim
=

Φ

Nsim
AΩ∆λ

Here ∆λ is the total wavelength range of the source; since the spectrum is flat in energy
(but not in wavelength), the flux will actually be different for different energies. A later
version of this component will probably adapt (in a backward-compatible way) a more
sensible way to specify the flux. For now, an energy or wavelength monitor (see sections 8.7
and 8.8) placed just after the source will show the actual energy-dependent flux.

4.7.1 The adaption algorithm

The adaptive importance sampling works by subdividing the initial neutron phase space
into a number of equal-sized bins. The division is done on the three dimensions of energy,
horizontal position, and horizontal divergence, using Neng, Npos, and Ndiv number of bins
in each dimension, respectively. The total number of bins is therefore

Nbin = NengNposNdiv

Each bin i is assigned a sampling weight wi; the probability of emitting a neutron within
bin i is

P (i) =
wi

∑Nbin
j=1 wj

In order to avoid false learning, the sampling weight of a bin is kept larger than wmin,
defined as

wmin =
β

Nbin

Nbin
∑

j=1

wj , 0 ≤ β ≤ 1

This way a (small) fraction β of the neutrons are sampled uniformly from all bins, while
the fraction (1 − β) are sampled in an adaptive way.

Risø–R–1xyz(EN) 21

Compared to a uniform sampling of the phase space (where the probability of each bin
is 1/Nbin), the neutron weight must be adjusted by the amount

πi =
1/Nbin

P (i)
=

∑Nbin
j=1 wj

Nbinwi

In order to set the criteria for adaption, the Adapt check component is used (see
section 8.14). The source attemps to sample only from bins from which neutrons are not
absorbed prior to the position in the instrument at which the Adapt check component
is placed. Among those bins, the algorithm attemps to minimize the variance of the
neutron weights at the Adapt check position. Thus bins that would give high weights at
the Adapt check position are sampled more often (lowering the weights), while those with
low weights are sampled less often.

Let π = p1/p0 denote the ratio between the neutron weight p1 at the Adapt check
position and the initial weight p0 just after the source. For each bin, the component keeps
track of the sum ψ of π’s as well as of the total number of neutrons ni from that bin. The
average weight at the Adapt source position of bin i is thus ψi/ni.

We now distribute a total sampling weight of β uniformly among all the bins, and
a total weight of (1 − β) among bins in proportion to their average weight ψi/ni at the
Adapt source position:

wi =
β

Nbin
+ (1 − β)

ψi/ni
∑Nbins

j=1 ψj/nj

After each neutron event originating from bin i, the sampling weight wi is updated.

This basic idea can be improved with a small modification. The problem is that until
the source has had the time to learn the right sampling weights, neutrons may be emitted
with high neutron weights (but low probability). These low probability neutrons may
account for a large fraction of the total intensity in detectors, causing large variances in
the result. To avoid this, the component emits early neutrons with a lower weight, and
later neutrons with a higher weight to compensate. This way the neutrons that are emitted
with the best adaption contribute the most to the result.

The factor with which the neutron weights are adjusted is given by a logistic curve

F (j) = C
y0

y0 + (1 − y0)e−r0j
(4.3)

where j is the index of the particular neutron history, 1 ≤ j ≤ Nhist. The constants y0,
r0, and C are given by

y0 =
2

Nbin
(4.4)

r0 =
1

α

1

Nhist
log

(

1 − y0

y0

)

(4.5)

C = 1 + log

(

y0 +
1 − y0

Nhist
e−r0Nhist

)

(4.6)

The number α is given by the user and specifies (as a fraction between zero and one) the
point at which the adaption is considered good. The initial fraction α of neutron histories

22 Risø–R–1xyz(EN)

are emitted with low weight; the rest are emitted with high weight:

p0(j) =
Φ

Nsim
AΩ∆λ

∑Nbin
j=1 wj

Nbinwi
F (j)

The choice of the constants y0, r0, and C ensure that
∫ Nhist

t=0
F (j) = 1

so that the total intensity over the whole simulation will be correct
Similarly, the adjustment of sampling weights is modified so that the actual formula

used is

wi(j) =
β

Nbin
+ (1 − β)

y0

y0 + (1 − y0)e−r0j

ψi/ni
∑Nbins

j=1 ψj/nj

4.7.2 The implementation

The heart of the algorithm is a discrete distribution p. The distribution has N bins,
1 . . . N . Each bin has a value vi; the probability of bin i is then vi/(

∑N
j=1 vj).

Two basic operations are possible on the distribution. An update adds a number a to
a bin, setting vnew

i = vold
i + a. A search finds, for given input b, the minimum i such that

b ≤
i
∑

j=1

vj .

The search operation is used to sample from the distribution p. If r is a uniformly dis-
tributed random number on the interval [0;

∑N
j=1 vj] then i = search(r) is a random

number distributed according to p. This is seen from the inequality

i−1
∑

j=1

vj < r ≤
i
∑

j=1

vj,

from which r ∈ [
∑i−1

j=1 vj ; vi +
∑i−1

j=1 vj] which is an interval of length vi. Hence the

probability of i is vi/(
∑N

j=1 vj). The update operation is used to adapt the distribution
to the problem at hand during a simulation. Both the update and the add operation can
be performed very efficiently; how this is achieved will be described elsewhere.

The input parameters for Source adapt are xmin, xmax, ymin, and ymax in meters
to set the source dimensions; dist, xw, and yh to set the focusing as for Source flat (sec-
tion ??); E0 and dE to set the range of energies emitted, in meV (the range will be from
E0− dE to E0 + dE); flux to set the source flux Φ in cm−2st−1Ås−1; Neng, Npos, and Ndiv

to set the number of bins in each dimensions; alpha and beta to set the parameters α and
β as described above; and filename to give the name of a file in which to output the final
sampling destribution.

A good general-purpose value for α and β is α = β = 0.25. The number of bins
to choose will depend on the application. More bins will allow better adaption of the
sampling, but will require more neutron histories to be simulated before a good adaption
is obtained. The output of the sampling distribution is only meant for debugging, and the
units on the axis are not necessarily meaningful. Setting the filename to NULL disables the
output of the sampling distribution.

Risø–R–1xyz(EN) 23

4.8 Source Optimizer: A general Optimizer for McStas

This component was contributed by Emmanuel Farhi, Institute Laue-Langevin.
The component Source Optimizer optimizes the whole neutron flux in order to

achieve better statistics at each Monitor Optimizer location(s) (see section 8.15 for
this latter component). It can act on any incoming neutron beam (from any source type),
and more than one optimization criteria location can be placed along the instrument.

The usage of the optimizer is very simple, and usually does not require any configura-
tion parameter. Anyway the user can still customize the optimization via various options.

The optimizer efficiency makes it easy to increase the number of events at optimization
criteria locations by a factor of 20, and thus decreases the signal error bars by a factor
4.5. Higher factors can often be achieved in practise. Of course, the overall flux remains
the same as without optimizer.

4.8.1 The optimization algorithm

When a neutron reaches the Monitor Optimizer location(s), the component records its
position (x, y) and speed (vx, vy, vz) when it passed in the Source Optimizer. Some
distribution tables of good neutrons characteristics are then built.

When a bad neutron comes to the Source Optimizer (it would then have few chances
to reach Monitor Optimizer), it is changed into a better one. That means that its
position and velocity coordinates are translated to better values according to the good
neutrons distribution tables. Anyway, the neutron energy (

√
v2
x + v2

y + v2
z) is kept as far

as possible.
The Source Optimizer works as follow:

1. First of all, the Source Optimizer determines some limits (min and max) for vari-
ables x, y, vx, vy, vz.

2. Then the component records the non-optimized flux distributions in arrays with bins
cells (default is 10 cells). This constitutes the Reference source.

3. The Monitor Optimizer records the good neutrons (that reach it) and communi-
cate an Optimized source to the Source Optimizer. However, ’keep’ percent of the
original Reference source is sent unmodified (default is 10 %). The Optimized source
is thus:

Optimized = keep * Reference
+ (1 - keep) [Neutrons that will reach monitor].

4. The Source Optimizer transforms the bad neutrons into good ones from the Op-
timized source. The resulting optimised flux is normalised to the non-optimized
one:

poptimized = pinitial
Reference

Optimized
, (4.7)

and thus the overall flux at Monitor Optimizer location is the same as without
the optimizer. Usually, the process sends more good neutrons from the Optimized
source than than in the Reference one. The energy (and velocity) spectra of neutron

24 Risø–R–1xyz(EN)

beam is also kept, as far as possible. For instance, an optimization of vz will induce
a modification of vx or vy to try to keep |~v| constant.

5. When the continuous optimization option is activated (by default), the process loops
to Step (3) every ’step’ percent of the simulation. This parameter is computed
automatically (usually around 10 %) in auto mode, but can also be set by user.

During steps (1) and (2), some non-optimized neutrons with original weight pinitial may
lead to spikes on detector signals. This is greatly improved by lowering the weight p during
these steps, with the smooth option. The component optimizes the neutron parameters on
the basis of independant variables. Howver, it usually does work fine when these variables
are correlated (which is often the case in the course of the instrument simulation). The
memory requirements of the component are very low, as no big n-dimensional array is
needed.

4.8.2 Using the Source Optimizer

To use this component, just install the Source Optimizer after a source (but any location
is possible in principle), and use the Monitor Optimizer at a location where you want
to have better statistics.

/* where to act on neutrons */

COMPONENT optim_s = Source_Optimizer(options="")

...

/* where to have better statistics */

COMPONENT optim_m = Monitor_Optimizer(

xmin = -0.05, xmax = 0.05,

ymin = -0.05, ymax = 0.05,

optim_comp = optim_s)

...

/* using more than one Monitor_Optimizer is possible */

The input parameter for Source Optimizer is a single options string that can contain
some specific optimizer configuration settings in clear language. The formatting of the
options parameter is free, as long as it contains some specific keywords, that can be
sometimes followed by values.

The default configuration (equivalent to options = ””) is

options = ”continuous optimization, auto setting, keep = 10, bins = 10,
smooth spikes, and do not free energy during optimization”.

The keyword modifiers no or not revert the next option. Other options not shown here
are:

verbose displays optimization process (debug purpose).

unactivate to unactivate the Optimizer.

file=[name] Filename where to save optimized source distributions

The file option will save the source distributions at the end of the optimization. If no
name is given the component name will be used, and a ’.src’ extension will be added. By
default, no file is generated. The file format is in a McStas 2D record style.

Risø–R–1xyz(EN) 25

Chapter 5

Simple optical components: Arms,
slits, collimators, filters

Below we list a number of simple optical components which require only a minimum of
explanation.

5.1 Arm: The generic component

The component Arm is empty; is resembles an optical bench and has no effect on the
neutron. The function of this component is only to set up a local frame of reference within
the instrument definition. Other components of the same arm/optical bench may then
be positioned relative to the arm component using the McStas meta-language. The use
of arm components in the instrument definitions is not required but is recommended for
clarity.

Arm has no input parameters. For more about the use of this component, see the
sample instrument definitions listed in Appendix ??.

5.2 Slit: The rectangular slit

The component Slit is a very simple construction. It sets up a rectangular opening at
z = 0, and propagates the neutrons onto the plane of this rectangle by the kernel call
PROP Z0.

Neutrons within the slit opening are unaffected, while all other neutrons (no matter
how far from the opening their paths intersect the plane) are discarded by the kernel call
ABSORB. By this simplification, some neutrons contributing to the background in a real
experiment will be neglected. These are the ones that scatter off the inner side of the slit,
penetrates the slit material, or that clear one of the outer edges of the slit.

The input parameters of Slit are the four coordinates, (xmin, xmax, ymin, ymax) defining
the opening of the rectangle.

26 Risø–R–1xyz(EN)

5.3 Circular slit: The circular slit

The component Circular slit defines a circle in the z = 0 plane, centered in the origin.
In analogy with Slit, neutrons are propagated to this plane, and those which intersect the
plane outside the circle are ABSORB’ed.

The only input parameter of Circular slit is the radius, r, of the circle.

5.4 Beamstop rectangular: The rectangular beam stop

The component Beamstop rectangular models a thin, infinitely absorbing rectangle in
the X-Y plane, centered on the origin. The input parameters are xmin, xmax, ymin, and
ymax defining the edges of the slit in meters.

5.5 Beamstop circular: The circular beam stop

The component Beamstop circular models a thin, infinitely absorbing circular disk in
the X-Y plane, centered on the origin. It takes a single input parameter radius to define
the circle radius in meters.

5.6 Soller: The simple Soller blade collimator

The component Soller defines two rectangular openings like the one in Slit. Neutrons not
clearing both these openings are ABSORB’ed, see the discussion in 5.2. The collimating
effect is taken care of by employing an ideal triangular transmission through the collimator,
as explained below. For a more detailed Soller collimator simulation the Channeled guide
component can be employed, see section 6.4.

Let the collimation angle be δ = tan−1(d/L), where L is the length of the collimator
and d is the distance between the blades, and let φ be the divergence angle between the
neutron path and a vertical plane along the collimator axis, see Fig. 5.1. Neutrons with a
large divergence angle |φ| ≥ δ will always hit at least one collimator blade and will thus
be absorbed. For smaller divergence angles, |φ| < δ, the fate of the neutron depends on
its exact entry point. Assuming that a typical collimator has many blades, the absolute
position of each blade perpendicular to the collimator axis is somewhat uncertain (and
also unimportant). A simple statistical consideration now shows that the transmission
probability is T = 1 − tan |φ|/ tan δ.

We simulate the collimator by transmitting all neutrons with |φ| < δ, but adjusting
their weight with the amount

πi = T = 1 − tan |φ|/ tan δ, (5.1)

while all others are discarded by the kernel call ABSORB.

The input parameters for Soller are the coordinates (xmin, xmax, ymin, ymax), defining
the identical entry and exit apertures, the length, l, between the slits, and the collimator
divergence δ. If δ = 0, the collimating effect is disabled, so that πi = 1 whenever the
neutron clears the two apertures.

Risø–R–1xyz(EN) 27

x

y

z

L

d

L

PSfrag replacements

xmin xmax

ymin

ymax

δ

Figure 5.1: The geometry of a simple Soller blade collimators: The real Soller collimator,
seen from the top (left), and a sketch of the component Soller (right). The symbols are
defined in the text.

28 Risø–R–1xyz(EN)

5.7 Filter: A transmission filter

A neutron transmission filter act in much of the same way as two identical slits, one after
the other. The only difference is that the transmission of the filter varies with the neutron
energy.

In the simple component Filter, we have not tried to simulate the details of the trans-
mission process (which includes absorption, incoherent scattering, and Bragg scattering
in a polycrystalline sample, e.g. Be). Instead, the transmission is parametrised to be
πi = T0 when E ≤ Emin, πi = T1 when E ≥ Emax, and linearly interpolated between the
two values in the intermediate interval.

πi =







T0 E ≤ Emin

T1 + (T0 − T1)
Emax−E

Emax−Emin
Emin < E < Emax

T1 E≥Emax

(5.2)

If T1 = 0, the neutrons with E > Emax are ABSORB’ed.
The input parameters are the four slit coordinates, (xmin, xmax, ymin, ymax), the dis-

tance, l, between the slits, and the transmission parameters T0, T1, Emin, and Emax. The
energies are given in meV.

Risø–R–1xyz(EN) 29

Chapter 6

Advanced optical components:
mirrors and guides

This section describes advanced neutron optical components such as supermirrors and
guides. The first subsection, however, contains only a description of the reflectivity of a
supermirror.

6.1 Mirror reflectivity

To compute the reflectivity of the supermirrors, we use an empirical formula derived from
experimental data (see figure 6.1). The reflectivity is given by the following formula

R =

{

R0 if Q ≤ Qc
1
2R0(1 − tanh[(Q−mQc)/W])(1 − α(Q−Qc)) if Q > Qc

(6.1)

Here Q is the length of the scattering vector (in Å−1) defined by

Q = |ki − kf | =
mn

~
|vi − vf |, (6.2)

mn being the neutron mass. The value m is a parameter determined by the mirror materi-
als, the bilayer sequence, and the number of bilayers. As can be seen, R = R0 for Q < Qc,
which is the critical scattering wave vector for a single layer of the mirror material. At
higher values of Q, the reflectivity starts falling linearly with a slope α until a cut-off at
Q = mQc. The width of the cut-off is denoted W . For the curve in figure 6.1, the values
are

m = 4 R0 = 1 Qc = 0.02 Å
−1

α = 6.49 Å W = 1/300 Å
−1

As a special case, if m = 0 then the reflectivity is zero for all Q, ie. the surface is
completely absorbing.

In the components, the neutron weight is adjusted with the amount πi = R. To avoid
spending large amounts of computation time on very low-weight neutrons, neutrons for
which the reflectivity is lower than about 10−10 are ABSORB’ed.

30 Risø–R–1xyz(EN)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Momentum transfer Q [Å−1]

R
ef

le
ct

iv
ity

 p

Supermirror reflectivity, m = 4

Figure 6.1: A typical reflectivity curve for a supermirror, Eq. (6.2).

6.2 Mirror: The single mirror

The component Mirror models a single rectangular neutron mirror plate. It can be
used to e.g. assemble a complete neutron guide by putting multiple mirror components at
appropriate locations and orientations in the instrument definition, much like a real guide
is build from individual mirrors.

The mirror is assumed to lie in the first quadrant of the x-y plane, with one corner
at (0, 0, 0). If the neutron trajectory intersects the mirror plate, it is reflected, otherwise
it is left untouched. Since the mirror lies in the x-y plane, an incoming neutron with
velocity vi = (vx, vy, vz) is reflected with velocity vf = (vx, vy,−vz). The computation of
the reflectivity is handled as detailed in section 6.1.

The input parameters of this component are the rectangular mirror dimensions (l, h)
and the values of R0,m,Qc,W , and α for the mirror.

6.3 Guide: The guide section

The component Guide models a guide tube consisting of four flat mirrors. The guide
is centered on the z axis with rectangular entrance and exit openings parallel to the x-y
plane. The entrance has the dimensions (w1, h1) and placed at z = 0. The exit is of
dimensions (w2, h2) and is placed at z = l where l is the guide length. See figure 6.2.
Neutrons not clearing the guide entrance are ABSORB’ed. For a more general guide
simulation, see the Channeled guide component in section 6.4.

For computations on the guide geometry, we define the planes of the four guide sides

Risø–R–1xyz(EN) 31

h1

w1

h2

w2 Z

Y

X

Figure 6.2: The geometry used for the guide component.

by giving their normal vectors (pointing into the guide) and a point lying in the plane:

nv
1 = (l, 0, (w2 − w1)/2) Ov

1 = (−w1/2, 0, 0)
nv

2 = (−l, 0, (w2 − w1)/2) Ov
2 = (w1/2, 0, 0)

nh
1 = (0, l, (h2 − h1)/2) Oh

1 = (0,−h1/2, 0)
nh

2 = (0,−l, (h2 − h1)/2) Oh
2 = (0, h1/2, 0)

In the following, we refer to an arbitrary guide side by its origin O and normal n.

With these definitions, the time of intersection of the neutron with a guide side can be
computed by considering the projection onto the normal:

t1 =
(O− r0) · n

v · n (6.3)

For a neutron that leaves the guide through the guide exit we have

t2 =
l − z0
vz

(6.4)

To compute the interaction of the neutron with the guide, the neutron is initially propa-
gated to the z = 0 plane of the guide entrance. If it misses the entrance, it is ABSORB’ed.
Otherwise, we repeatedly compute the time of intersection with the four mirror sides and
the guide exit. The smallest positive t thus found gives the time of the next intersection
with the guide (or in the case of the guide exit, the time when the neutron leaves the
guide). The neutron is propagated to this point, the reflection from the side is computed
and the process is repeated until the neutron leaves the guide.

The reflected velocity vf of the neutron with incoming velocity vi is computed by the
formula

vf = vi − 2
n · vi

|n|2 n (6.5)

This expression is arrived at by again considering the projection onto the mirror nor-
mal (see figure 6.3). The reflectivity of the mirror is taken into account as explained in
section 6.1.

32 Risø–R–1xyz(EN)

n

n
n 2

n v- .
i

iv

vf

Figure 6.3: Neutron reflecting from mirror. vi and vf are the initial and final velocities,
respectively, and n is a vector normal to the mirror surface.

There are a few optimizations possible here to avoid redundant computations. Since the
neutron is always inside the guide during the computations, we always have (O−r0)·n ≤ 0.
Thus t ≤ 0 if v · n ≥ 0, so in this case there is no need to actually compute t. Some
redundant computations are also avoided by utilizing symmetry and the fact that many
components of n and O are zero.

The input parameters of this component are the opening sizes of the entry and exit
point of the guide, (w1, h1) and (w2, h2), respectively, the guide length, l, and the values
of R0,m,Qc,W , and α for the mirror.

6.4 Channeled guide: A guide section component with mul-
tiple channels

The component Channeled guide is a more flexible variation of the Guide component
described in the previous section. It allows the specification of different supermirror pa-
rameters for the horizontal and vertical mirrors, and also implements guides with multiple
channels as used in neutron bender devices. By setting the m value of the supermirror
coatings to zero, nonreflecting walls are simulated; this may be used to simulate a Soller
collimator.

The channel walls are assumed to be infinitely absorbing. The implementation is
basen on that of the Guide component. Initially, the channel which the neutron will enter
is computed. The x coordinate is then shifted so that the channel can be simulated as
a single instance of the Guide component. Finally the coordinates are restored when the
neutron exits the guide or is absorbed.

The input parameters are w1, h1, w2, h2, and l to set the guide dimensions in meters
as for the Guide component (entry window, exit window, and length); k to set the number
of channels; d to set the thickness of the channel walls, in meters; and R0, W, Qcx, Qcy,
alphax, alphay, mx, and my to set the supermirror parameters as described above (the
names with x denote the vertical mirrors, and those with y denote the horizontal ones).

Risø–R–1xyz(EN) 33

Chapter 7

Chopper-like components

In this section, we will present rotating components such as chopppers, velocity selectors,
etc.

7.1 V selector: The rotating velocity selector

The component V selector models a rotating velocity selector constructed from a number
of collimator blades arranged radially on an axis. Two identical slits at a 12 o’clock position
allow neutron passage at the position of the blades. The blades are ”twisted” on the axis
so that a stationary velocity selector does not transmit any neutrons; the total twist angle
is denoted φ. By rotating the selector you allow transmittance of neutrons around certain
velocities, given by

V0 = ωL/φ, (7.1)

which means that the selector has turned the twist angle φ during the neutron flight time
L/V0.

Neutrons having a velocity slightly smaller or larger than V0 will either be transmitted
or absorbed depending on the exact position of the rotator blades when the neutron enters
the selector. Assuming this position to be unknown (and assuming infinitely thin blades),
we arrive at

T =

{

1 − (N/2π)|φ − ωL/V | if − 1 < (N/2π)(φ − ωL/V) < 1
0 otherwise

(7.2)

where N is the number of collimator blades.

A horisontal divergence changes the above formula because of the angular difference
between the entry and exit points of the neutron. The resulting transmittance resembles
the one above, only with V replaced by Vz and φ replaced by (φ+ψ), where ψ is the angular
difference due to the divergence. An additional vertical divergence does not change this
formula, but it may contribute to ψ. (We have here ignored the very small non-linearity
of ψ along the neutron path in case of both vertical and horisontal divergence).

Adding the effect of a finite blade thickness, t, reduces the transmission by the overall
amount

dT = (Nt)/(2πr), (7.3)

34 Risø–R–1xyz(EN)

where r is the distance from the rotation axis. We ignore the variation of r along the
neutron path and use just the average value.

The input parameters for V selector are the slit dimensions, width, height (in m), the
distance between apertures, L0 (in m), the length of the collimator blades, L1 (in m), the
height from rotation axix to the slit centre, r0 (in m), the rotation speed ω (in rpm) the
twist angle φ (in degrees), the blade thickness t (in m), and the number of blades, N .

The local coordinate system is centered at the slit centre.

7.2 Chopper: The disc chopper

This component was contributed by Philipp Bernhardt, Lehrstuhl für Kristallographie
und Strukturphysik.

To cut a continuous neutron beam into short pulses, you can use a disc chopper (fig-
ure 7.1). This is a fast rotating disc with the rotating axis parallel to the neutron beam.
The disk consists of neutron absorbing materials. To form the pulses there are slits through
which the neutrons can pass.

disc

R

y

x

-f

+fslit

coordinate system of the chopper

w

Figure 7.1: disc chopper

This component simulates choppers with more than one slit. The slits are symmetri-
cally disposed on the disc. You can set the direction of rotation, which allows to simulate
double choppers. You can also define the phase by setting the time at which one slit is
positioned at the top. The sides of the slits are pointing towards the center of the disc.
The thickness of the disc is neglected. There is no parameter for the height of the slits,
so if you like to limit the neutrons in the y-direction, just use a slit component in front of
the chopper.

Risø–R–1xyz(EN) 35

If you use a rectangular shaped beam and the beam has nearly the same size as the
slit, you will get an almost triangular shape of the transmission curve (figure 7.2).

time

tr
an

sm
is

si
on

Figure 7.2: example transmission curve for the disc chopper

The input parameters for this component are the width w of the slit at the radius R
of the disc, the phase pha, the number of slits n and the angular frequency f . The sign of
f defines the direction of rotation, as can be seen in figure 7.1.

7.3 First chopper: The first disc chopper

This component was contributed by Philipp Bernhardt, Lehrstuhl für Kristallographie
und Strukturphysik.

The disadvantage of the component ‘Chopper’ is the bad statistic, because most of the
neutrons of a continuous beam are absorbed. Furthermore TOF-instruments define the
starting time of the neutrons at the position of the first chopper and not at the source.
Therefore this component is useful. This ‘first disc chopper‘ has the same geometrical and
physical attributes as the normal disc chopper before. But it does not check if the neutron
can pass the disc chopper, it instead gives the neutron a time at which it is possible to
pass. There is no absorption in this component, all neutrons will be used.

Because the value t of the incoming neutron will be overwritten, this chopper can only
be used as a first chopper.

The input parameters are, again, the width w of the slit at the radius R of the disc,
the phase pha of the chopper, the number of slits n and the angular frequency f (sign
defines direction of rotation). With the additional parameter a you can set the number of

36 Risø–R–1xyz(EN)

pulses. This is useful if you want to investigate frame overlaps.

Risø–R–1xyz(EN) 37

Chapter 8

Detectors and monitors

In real neutron experiments, detectors and monitors play quite different roles. One wants
the detectors to be as efficient as possible, counting all neutrons (and absorbing them in
the process), while the monitors measure the intensity of the incoming beam, and must
as such be almost transparent, interacting only with (roughly) 0.1-1% of the neutrons
passing by. In computer simulations, it is of course possible to detect every neutron
without absorbing it or disturbing any of its parameters. Hence, the two components
have very similar functions in the simulations, and we do not distinguish between them.
For simplicity, they are from here on just called monitors, since they do not absorb the
neutron.

Another difference between computer simulations and real experiments is that one may
allow the monitor to be sensitive to any neutron property, as e.g. direction, energy, and
polarization, in addition to what is found in advanced existing monitors (space and time).
One may, in fact, let the monitor have several of these properties at the same time, as
seen for example in the energy sensitive monitor in section 8.7.

8.1 Monitor: The single monitor

The component Monitor consists of a rectangular opening — like that for slit. The
neutron is propagated to the plane of the monitor by the kernel call PROP Z0. Any
neutron that passes within the opening is counted — the number counting variable is
incremented: Ni = Ni−1+1, the neutron weight pi is added to the weight counting variable:
Ii = Ii−1 + pi, and the second moment of the weight is updated: M2,i = M2,i−1 + p2

i . The
input parameters for Monitor are the opening coordinates xmin, xmax, ymin, ymax, and the
output parameters are the three count numbers, N, I, and M2.

8.2 Monitor 4PI: The 4π monitor

The component Monitor 4PI does not model any physical monitor but may be thought of
as a spherical monitor completely surrounding the previous component. It simply detects
all neutrons that have not been absorbed at the position in the instrument in which it
is placed. If this monitor is placed in the instrument file after another component, e.g.

38 Risø–R–1xyz(EN)

a sample, it will count any neutron scattered from this component. This may be useful
during tests.

The output parameters for Monitor 4PI are the three count numbers, N, I, and M2.

8.3 PSD monitor: The PSD monitor

The component PSD monitor closely resembles Monitor. In the PSD monitor, though,
the rectangular monitor window is divided into n × m pixels, each of which acts like a
single monitor.

The input parameters for PSDmonitor are the opening coordinates xmin, xmax, ymin,
ymax, the array dimensions (n,m), and a name of a file in which to store I(x, y). The
output parameters are three two-dimensional arrays of counts: N(x, y), I(x, y),M2(x, y).

8.4 PSD monitor 4PI: The 4π PSD monitor

The component PSD monitor 4PI represents a PSD monitor shaped as a sphere, much
like Monitor 4PI. It subdivides the surface of the sphere into pixels of equal area (using
a projection onto a cylinder with an axis which is vertical in the local coordinate system)
and distributes the incoming neutron counts into the respective pixels.

The 4π PSD monitor is typically placed around another component. Used in this way,
the 4π PSD monitor is very useful for debugging components.

The input parameters for PSD monitor 4PI are the monitor radius, the number
of pixels, (nx, ny) – where y is the vertical direction, and the name of the file in which
to store I(x, y). The output parameters of the component are the three count arrays
N(x, y), I(x, y), and M2(x, y).

8.5 PSD monitor 4PI log: The 4π PSD monitor with log

scale

The component PSD monitor 4PI log is the same as PSD monitor 4PI described in
the previous section, except that the output histograms contain the base-10 logarithm of
the intensities rather than the intensities themselves. Currently, this does not work well
together with the McStas mechanism to output detector results (see section ??), so the
total intensity as output by McStas from this detector component will be wrong. However,
the component was sufficiently useful in Laue-type diffraction instruments to be included
here nevertheless. A future version of McStas may implement a better way to get log-scale
in output files.

The input parameters for PSD monitor 4PI log are the same as for PSD monitor 4PI.

8.6 TOF monitor: The time-of-flight monitor

TOF monitor is a rectangular single monitor which is sensitive to the absolute time,
where the neutron is hits the component. Like in a real time-of-flight detector, the time

Risø–R–1xyz(EN) 39

dimension is binned into small time intervals of length dt, whence this monitor updates a
one-dimensional array of counts.

The input parameters for TOF monitor are the opening coordinates xmin, xmax, ymin,
ymax, the number of time bins (beginning from t = 0), nchan, the time spacing between
bins, dt (in µs), and the name of the output file. Output parameters of the component
are the three count arrays N(i), I(i), and M2(i), where i is the bin number.

8.7 E monitor: The energy sensitive monitor

The component E monitor resembles TOF monitor to a very large extent. Only this
monitor is sensitive to the neutron energy, which in binned in nchan bins between Emin

and Emax.

The input parameters for E monitor are the opening coordinates xmin, xmax, ymin,
ymax, the total energy interval given by Emin and Emax (in meV), and nchan and the
name of the output file. Output parameters of the component are the three count arrays
N(i), I(i), and M2(i), i being the bin number.

8.8 L monitor: The wavelength sensitive monitor

The component L monitor is a rectangular monitor with an opening in the x-y plane
which is sensitive to the neutron wavelength. The wavelength spectrum is output in a
one-dimensional histogram. Only neutrons with wavelength λ0 < λ < λ1 are detected.

The input parameters for L monitor are the opening coordinates xmin, xmax, ymin,
and ymax defining the edges of the slit in meters; the lower and upper wavelength limit
Lmin and Lmax in Ångstrøm; the number of histogram bins nchan; and filename, a string
giving the name of the file to store the data in.

8.9 Divergence monitor: The divergence sensitive monitor

The component Divergence monitor is a rectangular monitor with an opening in the
x-y plane, which is sensitive to the neutron divergence, i.e. the angle between the neutron
path and the monitor surface normal.

The divergence is divided into horisontal and vertical divergencies, which are calcu-
lated as δh = tan−1(vx/vz) and δv = tan−1(vy/vz), respectively. Only neutrons within
a divergence window of δh = (−δh,max; δh,max), δv = (−δv,max; δv,max) are detected. The
counts are binned in an array of nh × nv pixels.

The input parameters for the Divergence monitor component are the opening coordi-
nates (xmin, xmax, ymin, ymax), the number of pixels (nh, nv), the parameters (δh,max, δv,max)
defining the divergence interval, and a name of the file in which to store the detected in-
tensities.

Note that a divergence sensitive monitor with a small opening may be thought of as a
non-reversing pinhole camera.

40 Risø–R–1xyz(EN)

8.10 DivPos monitor: The divergence-position sensitive mon-
itor

The component DivPos monitor is a rectangular monitor with an opening in the x-y
plane, which is sensitive to both the horizontal neutron divergence and the horizontal
neutron position. The neutron intensity as a function of position and divergence is output
in a two-dimensional histogram. This output may be directly compared to an accep-
tance diagram, an analytical technique that is sometimes used to calculate neutron guide
performances.

The horizontal divergence is calculated as δh = tan−1(vx/vz) . Only neutrons within
a divergence window of δh = (−δh,max; δh,max) are detected.

The input parameters for the DivPos monitor component are the opening coordinates
xmin, xmax, ymin, and ymax in meters; the number of histogram bins npos and ndiv
in position and divergence; the maximum divergence maxdiv to detect, in degrees; and
filename, a string giving the name of the file to store the data in.

8.11 DivLambda monitor: The divergence-wavelength sen-

sitive monitor

The component DivLambda monitor is a rectangular monitor with an opening in the x-
y plane, which is sensitive to both the horizontal neutron divergence and the wavelength.
The neutron intensity as a function of wavelength and divergence is output in a two-
dimensional histogram.

The horizontal divergence is calculated as δh = tan−1(vx/vz) . Only neutrons within
a divergence window of δh = (−δh,max; δh,max) and with wavelength λ0 < λ < λ1 are
detected.

The input parameters for the DivLambda monitor component are the opening coor-
dinates xmin, xmax, ymin, and ymax in meters; the number of histogram bins nlam and
ndiv in wavelength and divergence; the maximum divergence maxdiv to detect, in degrees;
lambda 0 and lambda 1 to define the wavelength window, in Ångstrøm; and filename, a
string giving the name of the file to store the data in.

8.12 Monitor nD: A general Monitor for 0D/1D/2D records

This component was contributed by Emmanuel Farhi, Institute Laue-Langevin.

The component Monitor nD is a general Monitor that can output any set of physical
parameters concerning the passing neutrons. The generated files are either a set of 1D
signals ([Intensity] vs. [Variable]), or a single 2D signal ([Intensity] vs. [Variable 1] vs.
[Variable 1]), and possibly a simple long list of the selected physical parameters for each
neutron.

The input parameters for Monitor nD are its dimensions xmin, xmax, ymin, ymax (in
meters) and an options string describing what to detect, and what to do with the signals, in
clear language. The formatting of the options parameter is free, as long as it contains some
specific keywords, that can be sometimes followed by values. The no or not option modifier

Risø–R–1xyz(EN) 41

will revert next option. The all option can also affect a set of monitor configuration
parameters (see below).

The Monitor nD geometry

The monitor shape can be selected among four geometries:

1. (square) The default geometry is flat rectangular in (xy) plane with dimensions
xmin, xmax, ymin, ymax.

2. (disk) When choosing this geometry, the detector is a flat disk in (xy) plane. The
radius is then

radius = max(abs [xmin, xmax, ymin, ymax]). (8.1)

3. (sphere) The detector is a sphere with the same radius as for the disk geometry.

4. (cylinder) The detector is a cylinder with revolution axis along y (vertical). The
radius in (xz) plane is

radius = max(abs [xmin, xmax]), (8.2)

and the height along y is
height = |ymax − ymax|. (8.3)

By default, the monitor is flat, rectangular. Of course, you can choose the orientation
of the Monitor nD in the instrument description file with the usual ROTATED modifier.

For the sphere and cylinder, the incoming neutrons are monitored by default, but you
can choose to monitor outgoing neutron with the outgoing option.

At last, the slit or absorb option will ask the component to absorb the neutrons that
do not intersect the monitor.

The neutron parameters that can be monitored

There are 25 different variables that can be monitored at the same time and position.
Some can have more than one name (e.g. energy or omega).

kx ky kz k wavevector (Angs-1) Wavevector norm or coordinates

vx vy vz v (m/s) Velocity norm or coordinates

x y z radius (m) Position and radius in (xy) plane

t time (s) Time of Flight

energy omega (meV) Neutron energy

lambda wavelength (Angs) Neutron wavelength

p intensity flux (n/s) or (n/cm^2/s) The neutron weight

ncounts (1) The number of events detected

sx sy sz (1) Spin of the neutron

vdiv (deg) vertical divergence

hdiv divergence (deg) horizontal divergence

angle (deg) divergence from <z> direction

theta longitude (deg) longitude (x/z)

phi lattitude (deg) lattitude (y/z)

42 Risø–R–1xyz(EN)

To tell the component what you want to monitor, just add the variable names in the
options parameter. The data will be sorted into bins cells (default is 20), between some
default limits, that can also be set by user. The auto option will automatically determine
what limits should be used to have a good sampling of signals.

The with borders option will monitor variables that are outside the limits. These values
are then accumulated on the ’borders’ of the signal.

Each monitoring will record the flux (sum of weights p) versus the given variables. The
per cm2 option will ask to normalize the flux to the monitor section surface.

Some examples ?

1. options="x bins=30 limits=[-0.05 0.05] ; y"

will set the monitor to look at x and y. For y, default bins and limits values (monitor
dimensions) are used.

2. options="x y, all bins=30, all limits=[-0.05 0.05]"

will do the same, but set limits and bins for x and y.

3. options="x y, auto limits"

will determine itself the required limits for x and y to monitor passing neutrons with
default bins=20.

The output files

By default, the file names will be the component name, followed by automatic extensions
showing what was monitored (such as MyMonitor.x). You can also set the filename in
options with the file keyword followed by the file name that you want. The extension will
then be added if the name does not contain a dot (.).

The output files format are standard 1D or 2D McStas detector files. The no file option
will unactivate monitor, and make it a single 0D monitor detecting integrated flux and
counts. The verbose option will display the nature of the monitor, and the names of the
generated files.

The 2D output

When you ask the Monitor nD to monitor only two variables (e.g. options = ”x y”), a
single 2D file of intensity versus these two correlated variables will be created.

The 1D output

The Monitor nD can produce a set of 1D files, one for each monitored variable, when
using 1 or more than 2 variables, or when specifying the multiple keyword option.

The List output

The Monitor nD can additionally produce a list of variable values for neutrons that pass
into the monitor. This feature is additive to the 1D or 2D output. By default only 1000
events will be recorded in the file, but you can specify for instance ”list 3000 neutrons”
or ”list all neutrons”. This last option might require a lot of memory and generate huge
files.

Risø–R–1xyz(EN) 43

Usage examples

• COMPONENT MyMonitor = Monitor_nD(

xmin = -0.1, xmax = 0.1,

ymin = -0.1, ymax = 0.1,

options = "energy auto limits")

will monitor the neutron energy in a single 1D file (a kind of E monitor)

• options="x y, all bins=50"

will monitor the neutron x and y in a single 2D file (same as PSD monitor)

• options="multiple x bins=30, y limits=[-0.05 0.05]"

will monitor the neutron x and y in two 1D files

• options="x y z kx ky kz, auto limits"

will monitor theses variables in six 1D files

• options="x y z kx ky kz, list all, auto limits"

will monitor all theses neutron variables in one long list

• options="multiple x y z kx ky kz, and list 2000, auto limits"

will monitor all theses neutron variables in one list of 2000 events and in six 1D files

8.13 Res monitor: The resolution monitor

The component Res monitor is used together with the Res sample component (de-
scribed in section 11.1) and the mcresplot front-end (described in section ??). It works
like a normal single detector, but also records all scattering events in the resolution sample
and writes them to a file that can later be read by mcresplot.

The instrument definition should contain an instance of the Res sample component,
the name of which should be passed as an input parameter to Res monitor. For example

COMPONENT mysample = Res_sample(...)

...

COMPONENT det = Res_monitor(res_sample_comp = mysample, ...)

...

The output file is in ASCII format, one line per scattering event, with the following
columns:

• ki, the three components of the initial wave vector.

• kf , the three components of the final wave vector.

• r, the three components of the position of the scattering event in the sample.

• pi, the neutron weight just after the scattering event.

• pf , the relative neutron weight adjustment from sample to detector (so the total
weight in the detector is pipf).

44 Risø–R–1xyz(EN)

From ki and kf , we may compute Q = ki − kf and ω = (2.072 meV·Å2)(k2
i − k2

f).
The vectors are given in the local coordinate system of the resolution sample compo-

nent. The wave vectors are in units of Å
−1

, the scattering position in units of meters.
The input parameters for Res monitor are the opening coordinates xmin, xmax, ymin,

ymax as for the single monitor component, the name of the file to write in filename, and
res sample comp which should be set to the name of the resolution sample component used
in the instrument. The output parameters are the three count numbers, Nsum, psum, and
p2sum, and the handle file of the output file.

8.14 Adapt check: The simple adaptive importance sam-

pling monitor

The component Adapt check is used together with the Source adapt component — see
section 4.7 for details. When placed somewhere in an instrument using Source adapt, the
source will optimize for neutrons that reach that point without being absorbed (regardless
of neutron position, direction, wavelength, etc).

The Adapt check component takes a single input parameter source comp. This should
be set to the name given to the Source adapt component in the instrument, for example

...

COMPONENT mysource = Source_adapt(...)

...

COMPONENT mycheck = Adapt_check(source_comp = mysource)

...

8.15 Monitor Optimizer: Optimization locations for the Sour-
ce Optimizer component

This component was contributed by Emmanuel Farhi, Institute Laue-Langevin.
The Monitor Optimizer component works with the Source Optimizer component.

See section 4.8 for usage.
The input parameters for Monitor Optimizer are the rectangular shaped opening

coordinates xmin, xmax, ymin, ymax (in meters), and the name of the associated instance
of the Source Optimizer component used in the instrument description file (one word,
without quotes).

Risø–R–1xyz(EN) 45

Chapter 9

Bragg scattering single crystals,
monochromators

In this class of components, we are concerned with elastic Bragg scattering from single
crystals. The Mosaic anisotropic component models a thin mosaic crystal with a single
scattering vector perpendicular to the surface. It is a replacement for the Monochromator
component from previous releases; it uses a better algorithm that works in some cases
where the old component would give wrong results. The Mosaic simple component is
similar, but has an isotropic mosaic and allows a scattering vector that is not perpendicular
to the surface. The Single crystal component is a general single crystal sample that allows
the input of an arbitrary unit cell and a list of structure factors, and also allows anisotropic
mosaic and ∆d/d lattice space variation.

9.0.1 Mosaic simple: An infinitely thin mosaic crystal with a single scat-
tering vector

The component Mosaic simple simulates an infinitely thin single crystal with a single
scattering vector and a mosaic spread. A typical use for this component is to simulate a
monochromator or an analyzer.

The physical model used in the component is a rectangular piece of material composed
of a large number of small micro-crystals. The orientation of the micro-crystals deviates
from the nominal crystal orientation so that the probability of a given micro-crystal ori-
entation is proportional to a Gaussian in the angle between the given and the nominal
orientation. The width of the Gaussian is given by the mosaic spread of the crystal. The
mosaic spread is assumed to be large compared to the Bragg width of the scattering vector.

As a further simplification, the crystal is assumed to be infinitely thin. This means
that multiple scattering effects are not simulated. It also means that the total reflectivity
can be used as a parameter for the model rather than the atomic scattering cross section.
The variance of the lattice spacing (∆d/d) is assumed to be zero, so this component is
not suitable for simulating backscattering instruments (use the component Single crystal
in section 9.0.3 for that).

When a neutron trajectory intersects the crystal, the first step in the computation is
to determine the probability of scattering. This probability is then used in a Monte Carlo
choice deciding whether to scatter or transmit the neutron. The scattering probability is

46 Risø–R–1xyz(EN)

PSfrag replacements
θ

2ki

Q0

2Q0

3Q0

4Q0

Figure 9.1: Selection of the Bragg order (“2” in this case).

the sum of the probabilities of first-order scattering, second-order, . . . , up to the highest
order that permits Bragg scattering at the given neutron wave length. However, in most
cases at most one order will have a significant scattering probability, and the computation
thus considers only the order that best matches the neutron wavelength. Bragg’s law is

nQ0 = 2ki sin θ

Thus, the scattering order is obtained simply as the integer multiple n of the nominal
scattering vector Q0 which is closest to the projection of 2ki onto Q0 (see figure 9.1).
Once n has been determined, the Bragg angle θ can be computed. The angle d that the
nominal scattering vector Q0 makes with the closest scattering vector q that admits Bragg
scattering is then used to compute the probability of reflection from the mosaic

preflect = R0e
−d2/2σ2

,

where R0 is the reflectivity at the Bragg angle (see figure 9.2). The probability preflect is
used in a Monte Carlo choice to decide whether the neutron is transmitted or reflected.

In the case of reflection, the neutron will be scattered into the Debye-Scherrer cone,
with the probability of each point on the cone being determined by the mosaic. The
Debye-Scherrer cone can be described by the equation

kf = ki cos 2θ + sin 2θ(c cosϕ+ b sinϕ), ϕ ∈ [−π;π], (9.1)

where b is a vector perpendicular to ki and Q0, c is perpendicular to ki and b, and both
b and c have the same length as ki (see figure 9.3). When choosing ϕ (and thereby kf),
only a small part of the full [−π;π] range will have appreciable scattering probability in
non-backscattering configurations. The best statistics is thus obtained by sampling ϕ only
from a suitably narrow range.

The (small) deviation angle σ of q from the nominal scattering vector nQ0 corresponds
to a ∆q of

∆q ≈ σ2k sin θ.

Risø–R–1xyz(EN) 47

PSfrag replacements

θ

2ki

2kf

Q0
d

q

Figure 9.2: Computing the deviation d from the nominal scattering direction.

The angle ϕ corresponds to a ∆kf (and hence ∆q) of

∆q ≈ ϕk sin(2θ)

(see figure 9.3). Hence we may sample ϕ from a Gaussian with standard deviation

σ
2k sin θ

k sin(2θ)
= σ

2k sin θ

2k sin θ cos θ
=

σ

cos θ

to get good statistics.
What remains is to get the neutron weight right. The distribution from which the

scattering event is sampled is a Gaussian in ϕ of width σ
cos θ ,

fMC(ϕ) =
1√

2π(σ/ cos θ)
e−ϕ2/2(σ/ cos θ)2

In the physical model, the probability of the scattering event is proportional to a Gaussian
in the angle between the nominal scattering vector Q0 and the actual scattering vector
q. The normalization condition is that the integral over all ϕ should be 1. Thus the
probability of the scattering event in the physical model is

Π(ϕ) = e
−d(ϕ)2

2σ2 /

∫ π

−π
e

−d(ϕ)2

2σ2 dϕ (9.2)

where d(ϕ) denotes the angle between the nominal scattering vector and the actual scat-
tering vector corresponding to ϕ. According to equation (??), the weight adjustment πj

is then given by
πj = Π(ϕ)/fMC(ϕ).

In the implementation, the integral in (9.2) is computed using a 15-order Gaussian quadra-
ture formula, with the integral restricted to an interval of width 5σ/ cos θ for the same
reasons discussed above on the sampling of ϕ.

The input parameters for Mosaic simple are zmin, zmax, ymin, and ymax to define the
surface of the crystal in the Y-Z plane; mosaic to give the FWHM of the mosaic spread;
R0 to give the reflectivity at the Bragg angle, and Qx, Qy, and Qz to give the scattering
vector.

48 Risø–R–1xyz(EN)

PSfrag replacements

2θ

2ki

2kf

nQ0

q 2k sin(2θ)

Figure 9.3: Scattering into the part of the Debye-Scherrer cone covered by the mosaic.

9.0.2 Mosaic anisotropic: The crystal with anisotropic mosaic

The component Mosaic anisotropic is a modified version of the Mosaic simple com-
ponent, intended to replace the Monocromator component from previous releases. It
restricts the scattering vector to be perpendicular to the crystal surface, but extends
the Mosaic simple component by allowing different mosaics in the horizontal and vertical
direction.

The code is largely similar to that for Mosaic simple, and the documentation for the
latter should be consulted for details. The differences are mainly due to two reasons:

• Some simplifications have been done since two of the components of the scattering
vector are known to be zero.

• The computation of the Gaussian for the mosaic is done done using different mosaics
for the two axes.

The input parameters for the component Mosaic anisotropic are zmin, zmax, ymin,
and ymax to define the size of the crystal (in meters); mosaich and mosaicv to define the
mosaic (in minutes of arc); r0 to define the reflectivity (no unit); and Q to set the length

of the scattering vector (in Å
−1

).

9.0.3 Single crystal: The single crystal component

The physical model

The textbook expression for the scattering cross-section of a crystal is [?]:

(

dσ

dΩ

)

coh.el.

= N
(2π)3

V0

∑

τ

δ(τ − κ)|Fτ |2

Risø–R–1xyz(EN) 49

PSfrag replacements
ki

kf

τ

η

∆d/d

Ewald
Sphere

Figure 9.4: Ewald sphere construction for a single neutron showing the Gaussian broad-
ening of reciprocal lattice points in their local coordinate system.

Here |Fτ |2 is the structure factor, N is the number of unit cells, V0 is the volume of an
individual unit cell, and κ = ki − kf is the scattering vector. δ(x) is a 3-dimensional
delta function in reciprocal space, so for given incoming wave vector ki and lattice vector
τ , only a single final wave vector kf is allowed. In a real crystal, however, reflections are
not perfectly sharp. Because of imperfection and finite-size effects, there will be a small
region around τ in reciprocal space of possible scattering vectors.

The Single crystal component simulates a crystal with a mosaic spread η and a lattice
plane spacing uncertainty ∆d/d. In such crystals the reflections will not be completely
sharp; there will be a small region around each reciprocal lattice point of the crystal that
contains valid scattering vectors.

We model the mosaicity and ∆d/d of the crystal with 3-dimensional Gaussian functions
in reciprocal space (see figure 9.4). Two of the axes of the Gaussian are perpendicular to
the reciprocal lattice vector τ and model the mosaicity. The third one is parallel to τ and
models ∆d/d. We assume that the mosaicity is small so that the possible directions of the
scattering vector may be approximated with a Gaussian in rectangular coordinates.

If the mosaic is isotropic (the same in all directions), the two Gaussian axes perpen-
dicular to τ are simply arbitrary normal vectors of equal length given by the mosaic. But
if the mosaic is anisotropic, the two perpendicular axes will in general be different for each
scattering vector. In the absence of anything better, the Single crystal component uses
a model which is at least mathematically plausible and which works as expected in the
two common cases: (1) isotropic mosaic, and (2) two mosaic directions (“horizontal and

50 Risø–R–1xyz(EN)

vertical mosaic”) perpendicular to a scattering vector.
The basis for the model is a three-dimensional Gaussian distribution in Euler angles

giving the orientation probability distribution for the micro-crystals; that is, the misorien-
tation is given by small rotations around the X, Y , and Z axes, with the rotation angles
having (in general different) Gaussian probability distributions. For given scattering vec-
tor τ , a rotation of the micro-crystals around an axis parallel to τ has no effect on the
direction of the scattering vector. Suppose we form the intersection between the three-
dimensional Gaussian in Euler angles and a plane through the origin perpendicular to τ .
This gives a two-dimensional Gaussian, say with axes defined by unit vectors g1 and g2

and mosaic widths η1 and η2.
We now let the mosaic for τ be defined by rotations around g1 and g2 with angles

having Gaussian distributions of widths η1 and η2. Since g1, g2, and τ are perpendicular,
a small rotation of τ around g1 will change τ in the direction of g2. The two axes of
the Gaussian mosaic in reciprocal space that are perpendicular to τ will thus be given by
τη2g1 and τη1g2.

We now derive a quantitative expression for the scattering cross-section of the crystal
in the model. For this, we introduce a local coordinate system for each reciprocal lattice
point τ and use x for vectors written in local coordinates. The origin is τ , the first axis
is parallel to τ and the other two axes are perpendicular to τ . In the local coordinate
system, the 3-dimensional Gaussian is given by

G(x1, x2, x3) =
1

(
√

2π)3
1

σ1σ2σ3
e
− 1

2
(

x2
1

σ2
1
+

x2
2

σ2
2
+

x2
3

σ2
3
)

(9.3)

The axes of the Gaussian are σ1 = τ∆d/d and σ2 = σ3 = ητ . Here we used the assumption
that η is small, so that tan η ≈ η (with η given in radians). By introducing the diagonal
matrix

D =





1
2σ

2
1 0 0

0 1
2σ

2
2 0

0 0 1
2σ

2
3





equation (9.3) can be written as

G(x) =
1

(
√

2π)3
1

σ1σ2σ3
e−xTDx (9.4)

again with x = (x1, x2, x3) written in local coordinates.
To get an expression in the coordinates of the reciprocal lattice of the crystal, we

introduce a matrix U such that if y = (y1, y2, y3) are the global coordinates of a point in
the crystal reciprocal lattice, then U(y + τ) are the coordinates in the local coordinate
system for τ . The matrix U is given by

UT = (û1, û2, û3),

where û1, û2, and û3 are the axes of the local coordinate system, written in the global
coordinates of the reciprocal lattice. Thus û1 = τ/τ , and û2 and û3 are unit vectors
perpendicular to û1 and to each other. The matrix U is unitarian, that is U−1 = UT. The
translation between global and local coordinates is

x = U(y + τ) y = UTx − τ

Risø–R–1xyz(EN) 51

The expression for the 3-dimensional Gaussian in global coordinates is

G(y) =
1

(
√

2π)3
1

σ1σ2σ3
e−(U(y+τ))TD(U(y+τ)) (9.5)

The elastic coherent cross-section is then given by

(

dσ

dΩ

)

coh.el.

= N
(2π)3

V0

∑

τ

G(τ − κ)|Fτ |2 (9.6)

The user must specify a list of reciprocal lattice vectors τ to consider along with their
structure factors |Fτ |2. The user must also specify the coordinates (in direct space) of the
unit cell axes a, b, and c, from which the reciprocal lattice will be computed.

In addition to coherent scattering, the Single crystal component also handles incoher-
ent scattering amd absorption. The incoherent scattering cross-section is supplied by the
user as a constant σinc. The absorption cross-section is supplied by the user at 2200 m/s,

so the actual cross-section for a neutron of velocity v is σabs = σ2200
2200 m/s

v .

The algorithm

The overview of the algorithm used in the Single crystal component is as follows:

1. Check if the neutron intersects the crystal. If not, no action is taken.

2. Search through a list of reciprocal lattice points of interest, selecting those that
are close enough to the Ewald sphere to have a non-vanishing scattering probability.
From these, compute the total coherent cross-section σcoh (see below), the absorption

cross-section σabs = σ2200
2200 m/s

v , and the total cross-section σtot = σcoh+σinc+σabs.

3. The transmission probability is exp(σtot
V0
`) where ` is the length of the flight path

through the crystal. A Monte Carlo choice is made whether the neutron is trans-
mitted or not. Optionally, the user may set a fixed Monte Carlo probability for the
first scattering event, for example to boost the statistics for a weak reflection.

4. For non-transmission, the position at which the neutron will interact is selected from
an exponential distribution. A Monte Carlo choice is made of whether to scatter
coherently or incoherently. Absorption is treated by weight adjustment (see below).

5. For incoherent scattering, the outgoing wave vector kf is selected with a random
direction.

6. For coherent scattering, a reciprocal lattice vector is selected by Monte Carlo choice,
and kf is found (see below).

7. Adjust the neutron weight as dictated by the Monte Carlo choices made.

8. Repeat from (2) until the neutron is transmitted (to simulate multiple scattering).

For point 2, the distance dist between a reciprocal lattice point and the Ewald sphere
is considered small enough to allow scattering if it is less than five times the maximum
axis of the Gaussian, dist ≤ 5max(σ1, σ2, σ3).

52 Risø–R–1xyz(EN)

PSfrag replacements

ki

kf

ρ

τ

x

Ewald

Sphere

Tangential

plane

Figure 9.5: The scattering triangle in the single crystal.

Choosing the outgoing wave vector The final wave vector kf must lie on the in-
tersection between the Ewald sphere and the Gaussian ellipsoid. Since η and ∆d/d are
assumed small, the intersection can be approximated with a plane tangential to the sphere,
see figure 9.5. The tangential point is taken to lie on the line between the center of the
Ewald sphere −ki and the reciprocal lattice point τ . Since the radius of the Ewald sphere
is ki, this point is

o = (1 − ki/ρ)ρ − τ

where ρ = ki − τ .

The equation for the plane is

P (t) = o +Bt, t ∈ R
2 (9.7)

Here B = (b1, b2) is a 3×2 matrix with the two generators for the plane b1 and b2. These
are (arbitrary) unit vectors in the plane, being perpendicular to each other and to the
plane normal n = ρ/ρ.

Each t defines a potential final wave vector kf(t) = ki + P (t). The value of the
3-dimensional Gaussian for this kf is

G(x(t)) =
1

(
√

2π)3
1

σ1σ2σ3
e−x(t)TDx(t) (9.8)

where x(t) = τ − (ki − kf(t)) is given in local coordinates for τ . It can be shown that
equation (9.8) can be re-written as

G(x(t)) =
1

(
√

2π)3
1

σ1σ2σ3
e−αe−(t−t0)TM(t−t0) (9.9)

Risø–R–1xyz(EN) 53

where M = BTDB is a 2×2 symmetric and positive definite matrix, t0 = −M−1BTDo is
a 2-vector, and α = −tT

0 Mt0+oTDo is a real number. Note that this is a two-dimensional
Gaussian (not necessarily normalized) in t with center t0 and axis defined by M .

To choose kf we sample t from the 2-dimensional Gaussian distribution (9.9). To do
this, we first construct the Cholesky decomposition of the matrix (1

2M
−1). This gives a

2× 2 matrix L such that LLT = 1
2M

−1 and is possible since M is symmetric and positive
definite. It is given by

L =

(√
ν11 0

ν12√
ν11

√

ν22 − ν2
12

ν11

)

where
1

2
M−1 =

(

ν11 ν12

ν12 ν22

)

Now let g = (g1, g2) be two random numbers drawn form a Gaussian distribution with
mean 0 and standard deviation 1, and let t = Lg + t0. The probability of a particular t

is then

P (t)dt =
1

2π
e−

1
2
gTgdg (9.10)

=
1

2π

1

detL
e−

1
2
(L−1(t−t0))T(L−1(t−t0))dt (9.11)

=
1

2π

1

detL
e−(t−t0)TM(t−t0)dt (9.12)

where we used that g = L−1(t− t0) so that dg = 1
det Ldt. This is just the normalized form

of (9.9). Finally we set k′
f = ki +P (t) and kf = (ki/k

′
f)k′

f to normalize the length of kf to
correct for the (small) error introduced by approximating the Ewald sphere with a plane.

Computing the total coherent cross-section To get the total coherent scattering
cross-section, the differential cross-section must be integrated over the Ewald sphere:

σcoh =

∫

Ewald

(

dσ

dΩ

)

coh.el.

dΩ

For small mosaic we may approximate the sphere with the tangential plane, and we thus
get from (9.6) and (9.9):

σcoh,τ =

∫

N
(2π)3

V0
G(τ − κ)|Fτ |2dΩ (9.13)

=
1

k2
i

N
(2π)3

V0

1

(
√

2π)3
e−α

σ1σ2σ3
|Fτ |2

∫

e−(t−t0)TM(t−t0)dt (9.14)

= det(L)
1

k2
i

N
(2π)3/2

V0

e−α

σ1σ2σ3
|Fτ |2

∫

e−
1
2
gTgdg (9.15)

= 2π det(L)
1

k2
i

N
(2π)3/2

V0

e−α

σ1σ2σ3
|Fτ |2 (9.16)

=
det(L)

k2
i

N
(2π)5/2

V0

e−α

σ1σ2σ3
|Fτ |2 (9.17)

σcoh =
∑

τ

σcoh,τ (9.18)

As before, we let g = L−1(t − t0) so that dt = det(L)dg.

54 Risø–R–1xyz(EN)

Adjusting the neutron weight We now calculate the correct neutron weight adjust-
ment for the Monte Carlo choices made. In three cases is a Monte Carlo choice made with
a probability different from the probability of the corresponding physical event: When
deciding whether to transmit the neutron or not, when simulating absorption, and when
selecting the reciprocal lattice vector τ to scatter from.

If the user has choosen a fixed transmission probability f(transmit) = ptransmit, the
neutron weight must be adjusted by

π(transmit) =
Π(transmit)

f(transmit)

where Π(transmit) = exp(σtot
V0
`) is the physical transmission probability. Likewise, for

non-transmission the adjustment is

π(no transmission) =
1 − Π(transmit)

1 − f(transmit)
.

Absorption is never explicitly simulated, so the Monte Carlo probability of coherent or
incoherent scattering is f(coh|inc) = 1. The physical probability of coherent or incoherent
scattering is

Π(coh|inc) =
σcoh + σinc

σtot
,

so again a weight adjustment π(coh|inc) = Π(coh|inc)/f(coh|inc) is needed.

When choosing the reciprocal lattice vector τ to scatter from, the relative probability
for τ is rτ = σcoh,τ/|Fτ |2. This is done to get better statistics for weak reflections. The
Monte Carlo probability for the reciprocal lattice vector τ is thus

f(τ) =
rτ

∑

τ rτ

whereas the physical probability is Π(τ) = σcoh,τ/σcoh. A weight adjustment is thus
needed of

π(τ) =
Π(τ)

f(τ)
=
σcoh,τ

∑

τ rτ
σcohrτ

.

The implementation

The equations describing the Single crystal simulation are quite complex, and consequently
the code is fairly sizeable. Most of it is just the expansion of the vector and matrix
equations in individual coordinates, and should thus be straightforward to follow.

The implementation pre-computes a lot of the necessary values in the INITIALIZE

section. It is thus actually very efficient despite the complexity. If the list of reciprocal
lattice points is big, however, the search through the list will be slow. The precomputed
data is stored in the structures hkl info and in an array of hkl data structures (one for
each reciprocal lattice point in the list). In addition, for every neutron event an array
of tau data is computed with one element for each reciprocal lattice point close to the
Ewald sphere. Except for the search for possible τ vectors, all computations are done in
local coordinates using the matrix U to do the necessary transformations.

Risø–R–1xyz(EN) 55

The list of reciprocal lattice points is specified in an ASCII data file. Each line contains
seven numbers, separated by white space. The first three numbers are the (h, k, l) indices
of the reciprocal lattice point, and the last number is the value of the structure factor
|Fτ |2, in barns. The middle three numbers are not used; they are nevertheless required
since this makes the file format compatible with the output from the Crystallographica
program [?].

The input parameters for the component are xwidth, yheight, and zthick to define
the dimensions of the crystal in meters; delta d d to give the value of ∆d/d (no unit);
(ax, ay, az), (bx, by, bz), and (cx, cy, cz) to define the axes of the direct lattice of the crystal
(the sides of the unit cell) in units of Ångstrøm; and reflections, a string giving the
name of the file with the list of structure factors to consider. The mosaic is specified
either isotropically as mosaic, or anisotropically as mosaic h (rotation around the Y
axis), mosaic v (rotation around the Z axis), and mosaic n (rotation around the X axis);
in all cases in units of full-width-half-maximum minutes of arc.

Optionally, the absorption cross-section at 2200 m/s and the incoherent cross-section
may be given as absorbtion and incoherent (in barns), with default of zero; and p transmit
may be assigned a fixed Monte Carlo probability for transmission through the crystal
without any interaction.

56 Risø–R–1xyz(EN)

Chapter 10

Powder-like sample components

In this section, we consider elastic coherent and incoherent scattering from polycrystalline
samples. We have chosen to simulate the correct physical processes within the powder
samples on a quite detailed level.

Within many samples, the incident beam is attenuated by scattering and absorption,
so that the illumination varies considerably throughout the sample. For single crystals,
this phenomenon is known as secondary extinction [?], but the effect is also important
in powders. In analytical treatments, attenuation is difficult to deal with, and is thus
often ignored, making a thin sample approximation. In Monte Carlo simulations, the
beam attenuation is easily taken care of, as will be shown below. For simplicity we ignore
multiple scattering, which will be implemented in a later version of McStas.

10.0.4 Weight transformation in samples; focusing

Let us look in detail on how to simulate the physics of the scattering process within the
powder. The sample has an absorption cross section per unit cell of σa

c and a scatter-
ing cross section per unit cell of σs

c . The neutron path length in the sample before the
scattering event is denoted by l1, and the path length within the sample after the scat-
tering is denoted by l2, see figure 10.1. We then define the inverse penetration lengths as
µs = σs

c/Vc and µa = σa
c /Vc, where Vc is the volume of a unit cell. Physically, the beam

along this path is attenuated according to

P (l) = exp(−l(µs + µa)), (10.1)

where the normalization is taken to be P (0) = 1.
The probability for a neutron to be scattered from within the interval [l1; l1 + dl] will

be
Π(l1)dl = µsP (l1)dl, (10.2)

while the probability for a neutron to be scattered from within this interval into the solid
angle Ω and not being scattered further or absorbed on the way out of the sample is

Π(l1,Ω)dldΩ = µsP (l1)P (l2)γ(Ω)dΩdl, (10.3)

where γ(Ω) is the directional distribution of the scattered neutrons, and l2 is determined
by l1, Ω, and the sample geometry, see figure 10.1.

Risø–R–1xyz(EN) 57

PSfrag replacements

l1

l2

lfull

Figure 10.1: The geometry of a scattering event within a powder sample.

In our Monte-Carlo simulations, we will often choose the scattering parameters by
making a Monte-Carlo choice of l1 and Ω from a distribution different from Π(l1,Ω). By
doing this, we must adjust πi according to the probability transformation rule (??). If
we e.g. choose the scattering depth, l1, from a flat distribution in [0; lfull], and choose the
directional dependence from g(Ω), we have a Monte Carlo probability

f(l1,Ω) = g(Ω)/lfull, (10.4)

lfull is here the path length through the sample as taken by a non-scattered neutron
(although we here assume that all simulated neutrons are being scattered). According to
(??), the neutron weight factor is now adjusted by the amount

πi(l1,Ω) = µslfull exp [−(l1 + l2)(µ
a + µs)]

γ(Ω)

g(Ω)
. (10.5)

In analogy with the source components, it is possible to define interesting directions for
the scattering. One will then try to focus the scattered neutrons, choosing a g(Ω), which
peaks around these directions. To do this, one uses (10.5), where the fraction γ(Ω)/g(Ω)
corrects for the focusing. One must choose a proper distribution so that g(Ω) > 0 in every
interesting direction. If this is not the case, the Monte Carlo simulation gives incorrect
results.

All samples of the powder type have been constructed with a focusing and a non-
focusing option.

10.1 V sample: An incoherent scatterer, the V-sample

A vanadium sample is frequently being used for calibration purposes, as almost all of the
scattering from the sample occurs incoherently.

58 Risø–R–1xyz(EN)

PSfrag replacements

ri ro

h

Figure 10.2: The geometry of the hollow-cylinder vanadium sample.

In the component V sample, shown in ?? we assume only absorption and incoherent
scattering. For the sample geometry, we have assumed the shape of a hollow cylinder
(which has the solid cylinder as a limiting case). The sample dimensions are: Inner radius
ri, outer radius ro, and height h, see figure 10.2.

When calculating the neutron path length within the sample material, the kernel func-
tion CYLINDER_INTERSECT is used twice, once for the outer radius and once for the inner
radius.

The incoherent scattering gives a completely uniform angular distribution of the scat-
tered neutrons from each V-nucleus: γ(Ω) = 1/4π. For the focusing we choose to have a
uniform distribution on a target sphere of radius rt, at the position (xt, yt, zt) in the local
coordinate system. This gives an angular distribution (in a small angle approximation) of

g(Ω) =
1

4π

x2
t + y2

t + z2
t

(πr2
t)

. (10.6)

The input parameters for the component V sample are the sample dimensions (ri, ro,
and h), the packing factor for the V-sample (pack), and the focusing parameters (xt, yt, zt,
and rt) for the target sphere. The relevant material parameters for V (σs

c , σ
a
c , and the

unit cell volume Vc) are contained within the component.

Note: When simulating a realistic V-sample of this geometry one finds that the result-
ing direction dependence of the scattered intensity is not isotropic. This is explained by
the variation of attenuation with scattering angle. One test result is shown in Appendix
??.

10.2 Powder1: A general powder sample

10.2.1 General considerations

An ideal powder sample consists of many small crystallites, although each crystallite is
sufficiently large not to cause size broadening. The orientation of the crystallites is evenly
distributed, and there is thus always a certain number of crystallites oriented to fulfill the

Risø–R–1xyz(EN) 59

PSfrag replacements

2θ

Figure 10.3: The scattering geometry of a powder sample showing the Debye-Scherrer
cone and the Debye-Scherrer circle.

Bragg condition

nλ = 2d sin θ, (10.7)

where n is the order of the scattering (an integer), λ is the neutron wavelength, d is
the lattice spacing of the sample, and 2θ is the scattering angle, see figure 10.3. As all
crystal orientations are realised in a powder sample, the neutrons are scattered within a
Debye-Scherrer cone of opening angle 4θ [?].

Equation (10.7) may be cast into the form

|Q| = 2|k| sin θ, (10.8)

where Q is a vector of the reciprocal lattice, and k is the wave vector of the neutron.
It is seen that only reciprocal vectors fulfilling |Q| < 2|k| contribute to the scattering.
For a complete treatment of the powder sample, one needs to take into account all these
Q-values, since each of them contribute to the attenuation.

The textbook expression for the scattering intensity from one reflection in a slab-shaped
powder sample, much larger than the beam cross section, reads [?]

P

P0
=

λ3ls
4πr

ρ′

ρ
tjN2

c |F (Q)|2 exp(−2W)
exp(−µat/cosθ)

sin2(2θ)
(10.9)

|F (Q)|2 =

∣

∣

∣

∣

∣

∣

∑

j

bj exp(Rj · Q)

∣

∣

∣

∣

∣

∣

2

, (10.10)

where the sum in the structure factor runs over all atoms in one unit cell. The meanings
and units of the symbols are

60 Risø–R–1xyz(EN)

P0 s−1 Incoming intensity of neutrons
P s−1 Detected intensity of neutrons
ls m Height of detector
r m Distance from sample to detector

ρ′/ρ 1 Packing factor of the powder
t m Slab thickness
j 1 Multiplicity of the reflection
Nc m−3 Density of unit cells in bulk material

|F (Q)|2 m2 Structure factor
exp(−2W) 1 Debye-Waller factor

µa m−1 Linear attenuation factor due to absorption.

In analogy with this, the textbook expression for a cylinder shaped powder sample, com-
pletely illuminated by the beam, reads [?]

P

Ψ0
=
V ρ′

ρ
N2

c |F (Q)|2j exp(−2W)
Ahkl

sin(θ) sin(2θ)

ls
2πr

λ3

4
, (10.11)

where the new symbols are

Ψ0 s−1m−2 Incoming beam flux
V m3 Sample volume
Ahkl 1 Attenuation factor.

Eq. (10.9) for a slab shaped sample may be cast into the form of the cylinder expression
above by using the substitutions

Incoming flux P0/(wh cos θ) → Ψ0

Sample volume wht → V
Absorption factor exp(−µat/ cos θ) → Ahkl,

where h and w are the height and width of the sample, respectively. Often, one defines
the scattering power as

Q ≡ N2 |F (Q)|2λ3

V sin(2θ)
= N2

c V
ρ′

ρ

|F (Q)|2λ3

sin(2θ)
, (10.12)

where N is the number of unit cells.
A cut though the Debye-Scherrer cone perpendicular to its axis is a circle. At the

distance r from the sample, the radius of this circle is r sin(2θ). Thus, the detector (in a
small angle approximation) only counts a fraction fd = ls/(2πr sin(2θ)) of the scattered
neutrons. One may now calculate the linear attenuation coefficient in the material due to
scattering (from one Q-value only):

µs ≡ − 1

P0

d(P/fd)

dl
=
Q

V
j exp(−2W) cos(θ). (10.13)

A powder sample will in general have several allowed reflections Qj, which will all con-
tribute to the attenuation. These reflections will have different values of |F (Qj)|2 (and
hence of Qj), jj , exp(−2Wj), and θj. The total attenuation through the sample due to
scattering is given by µs = µs

inc +
∑

j µ
s
j, where µs

inc represents the incoherent scattering.

Risø–R–1xyz(EN) 61

10.2.2 This implementation

For component Powder1, we assume that the sample has the shape of a solid cylinder.
Further, the incoherent scattering is only taken into account by the attenuation of the
beam, given by (10.13) and σa

c . The incoherently scattered neutrons are not propagated
through to the detector, but rather not generated at all. Focusing is performed by only
scattering into one angular interval, dφ of the Debye-Scherrer circle. The center of this
interval is located at the point where the Debye-Scherrer circle intersects the half-plane
defined by the initial velocity, vi, and a user-specified vector, f. Multiple scattering is not
implemented.

The input parameters for this component are

r m Radius of cylinder
h m Height of cylinder
σa

c fm2 Absorption cross section per unit cell (at 2200 m/s)
σs

i,c (fm)2 Incoherent scattering cross section per unit cell

ρ′/ρ 1 Packing factor
Vc Å3 Volume of unit cell
Q Å−1 The reciprocal lattice vector under consideration

|F (Qj)|2 (fm)2 Structure factor
j 1 Multiplicity of reflection

exp(−2W) 1 Debye-Waller factor
dφ deg Angular interval of focusing
fx m
fy m Focusing vector
fz m

The source text for the component is shown in Appendix ??.
In a later version, more reciprocal lattice vectors will be allowed. Further, we intent

to include the effect of multiple scattering.

62 Risø–R–1xyz(EN)

Chapter 11

Inelastic scattering kernels

In this section, samples with inelastic scattering are described. Currently, only a single
sample is available that scatters uniformly in (Q, ω) and is used for computing resolution
functions in tripple-axis instruments.

11.1 Res sample: A uniform scatterer for resolution calcu-
lation

The component Res sample models an inelastic sample that scatters completely homoge-
neous in position and energy; regardless of the state of the incoming neutron, all directions
and energies for the scattered neutron have the same probability. This clearly does not
correspond any physically realizable samples, but the component is very useful for com-
putation of the resolution function and may also be used for test and debugging purposes.
The component is designed to be used together with the Res monitor component, de-
scribed in section 8.13.

The shape of the sample is either a hollow cylinder (like the vanadium sample described
in section 10.1) or a rectangular box. The hollow cylinder shape is specified with inner
and outer radius radius i and radius o and height h. If radius o is negative, the shape is
instead a box of width radius i along the X axis, height h, and thickness −radius o along
the Z axis, centered on the Z axis and with the front face in the X-Y plane. See figure 11.1.

The component only propagates the neutrons that are scattered; neutrons that would
pass through or miss the sample are absorbed. There is no modeling of the cross section
of the sample, secondary extinction etc.; the scattering probability is proportional to
the neutron flight path length inside the sample, with the constant of proportionality
arbitrarily set to 1/(2|radius o|). The reason for this is that the component is designed
for computing the resolution function of an instrument, including the sample size but
independent of any sample properties such as scattering and absorbtion cross sections.

The point of scattering in the sample is chosen at a random position along the neutron
flight path inside the sample, and the scattered neutron is given a random energy and
direction. The energy is selected in a user-specified interval [E0−∆E;E0+∆E] which must
be chosen large enough to cover all interesting neutrons, but preferably not excessively
large for reasons of efficiency. Similarly, the direction is chosen in a user-specified range;
the range is such that a sphere of given center and radius is fully illuminated.

Risø–R–1xyz(EN) 63

PSfrag replacements

radius i radius o

h

radius i

−radius o

h
X

Y

Z

Figure 11.1: The two possible shapes of the Res sample component.

A special feature, used when computing resolution functions, is that the component
stores complete information about the scattering event in the output parameter res struct.
The information includes initial and final wave vectors, the coordinates of the scattering
point, and the neutron weight after the scattering event. From this information the scatter-
ing parameters (Qi, ωi) for every scattering event i may be recorded and used to compute
the resolution function of an instrument, as explained below. For an example of how to
use the information in the output parameter, see the description of the Res monitor
component in section 8.13.

The input parameters to the Res sample components are the sample dimensions
radius i, radius o, and h, all in meters; the center of the scattered energy range E0 and
the energy spread dE in meV; and the target sphere position in the local coordinate system
target x, target y, target z, and radius focus r, in meters. The only output parameter is
res struct containing information about the scattering event, with all vectors given in the
local coordinate system of the component in units of meter.

11.1.1 Background

In an experiment, as well as in the simulation, the expected intensity is by definition of
the resolution function given by

I =

∫

R(Q, ω)σ(Q, ω)dQdω

Here I(Q0, ω0) is the measured or simulated intensity in the detector, R is the resolution
function for the instrument in a given setup, σ is the scattering cross section of the sample,
and (Q, ω) denote the scattering vector and energy transfer in the sample. For the uniform
scatterer, σ(Q, ω) = 1/V0 is a constant, so we have

I = 1/V0

∫

R(Q, ω)dQdω

64 Risø–R–1xyz(EN)

If we instead consider only the intensity contributed by scattering with parameters (Q, ω)
that lie within a small part ∆Ω of the total phase space and has volume ∆V ,

I∆Ω = 1/V0

∫

∆Ω
R(Q, ω)dQdω =

∆V

V0
R(∆Ω)

(where R(∆Ω) denotes the average value of R over ∆Ω), we get a good approximation of
the value of R provided that ∆Ω is sufficiently small. This is useful with the output from
the simulations, since I∆Ω is approximated by

I∆Ω ≈
∑

(Qi,ωi)∈∆Ω

pi

This can be used to histogram the resolution function or visualize it in different ways.
The 3D visualization of the resolution function produced by the mcresplot program for
example uses this by displaying a cloud of dots, the local density of which is proportional
to the resolution function.

The mcresplot program also computes the covariance and resolution matrices. Let-
ting (x1

i , x
2
i , x

3
i , x

4
i) denote the (Qi, ωi) values obtained from the scattering events in the

simulation and µj = (
∑

i pix
j
i)/(

∑

i pi) the mean value of xj
i , the covariance matrix is

computed as

Cjk =
(

∑

i

pi(x
j
i − µj)(x

k
i − µk)

)

/
(

∑

i

pi

)

This covariance matrix is given in the local coordinate system of the sample component.
The mcresplot program actually outputs the covariance matrix in another coordinate
system which is rotated around the Y axis so that the projection to the X-Z plane of the
average scattering vector Qavg = (

∑

i piQi)/(
∑

i pi) is parallel to the X axis.
The resolution matrix M is the inverse of the covariance matrix and is also output in

the rotated coordinate system by mcresplot. The 4-dimensional gaussian distribution,
defined by

f(X) = e−
1
2
XT MX (11.1)

where X = (Q, ω), has covariance matrix C and thus defines the gaussian resolution
function with the same covariance as the resolution computed by the simulation.

The mcresplot program provides for the simultaneous visualization of the computed
and the gaussian resolution function by obtaining an appropriate number of random points
with the statistical distribution (11.1). Each point X is obtained as follows: A vector Y is
generated of four individually gaussian distributed random numbers with mean zero and
variance one. Using the Cholesky decomposition of C, C = LLT , we have

X = LY.

Risø–R–1xyz(EN) 65

Chapter 12

Instrument examples

Here, we give a short description of three selected instruments. We present the McStas
versions of the Risø standard triple axis spectrometer TAS1 (12.2) and the ISIS time-
of-flight spectrometer PRISMA (12.3). Before that, however, we present one example of
a component test instrument: the instrument to test the component V sample (12.1).
These instrument files are included in the McStas distribution in the examples/ directory.
All the instrument examples there-in may be executed automatically throught the McStas
self-test procedure (see section ??). It is also our intention to extend the list of instrument
examples extensively and perhaps publish them in a separate report.

12.1 A test instrument for the component V sample

This instrument is one of many test instruments written with the purpose of testing the
individual components. We have picked this instrument both because we would like to
present an example test instrument and because it despite its simplicity has produced
quite non-trivial results, also giving rise to the McStas logo.

The instrument consists of a narrow source, a 60’ collimator, a V-sample shaped as a
hollow cylinder with height 15 mm, inner diameter 16 mm, and outer diameter 24 mm at
a distance of 1 m from the source. The sample is in turn surrounded by an unphysical
4π-PSD monitor with 50 × 100 pixels and a radius of 106 m. The set-up is shown in
figure 12.1.

12.1.1 Scattering from the V-sample test instrument

In figure 12.2, we present the radial distribution of the scatting from an evenly illuminated
V-sample, as seen by a spherical PSD. It is interesting to note that the variation in the
scattering intensity is as large as 10%. This is an effect of attenuation of the beam in the
cylindrical sample.

12.2 The triple axis spectrometer TAS1

With this instrument definition, we have tried to create a very detailed model of the
conventional cold-source triple-axis spectrometer TAS1 at Risø National Laboratory. Un-

66 Risø–R–1xyz(EN)

PSfrag replacements

Source
Collimator

Vanadium

4π PSD

Figure 12.1: A sketch of the test instrument for the component V sample.

0

50

100

0

20

40

60
1.4

1.45

1.5

1.55

1.6

Figure 12.2: Scattering from a V-sample, measured by a spherical PSD. The sphere has
been transformed onto a plane and the intensity is plotted as the third dimension. A
colour version of this picture is found on the title page of this manual.

Risø–R–1xyz(EN) 67

fortunately, no neutron scattering is performed at Risø anymore, but it still serves as a
good example. Except for the cold source itself, all components used have quite realistic
properties. Furthermore, the overall geometry of the instrument has been adapted from
the detailed technical drawings of the real spectrometer. The TAS 1 simulation is the first
detailed work performed with the McStas package.For further details see reference [11].

At the spectrometer, the channel from the cold source to the monochromator is asym-
metric, since the first part of the channel is shared with other instruments. In the instru-
ment definition, this is represented by three slits. For the cold source, we use a flat energy
distribution (component Source flat) focusing on the third slit.

The real monochromator consist of seven blades, vertically focusing on the sample. The
angle of curvature is constant so that the focusing is perfect at 5.0 meV (20.0 meV for
2nd order reflections) for a 1×1 cm2 sample. This is modeled directly in the instrument
definition using seven Monochromator components. The mosaicity of the pyrolytic
graphite crystals is nominally 30’ (FWHM) in both directions. However, the simulations
indicated that the horisontal mosaicities of both monochromator and analyser were more
likely 45’. This was used for all mosaicities in the final instrument definition.

The monochromator scattering angle, in effect determining the incoming neutron en-
ergy, is for the real spectrometer fixed by four holes in the shielding, corresponding to the
energies 3.6, 5.0, 7.2, and 13.7 meV for first order neutrons. In the instrument definition,
we have adapted the angle corresponding to 5.0 meV in order to test the simulations
against measurements performed on the spectrometer.

The exit channel from the monochromator may on the spectrometer be narrowed down
from initially 40 mm to 20 mm by an insert piece. In the simulations, we have chosen the
20 mm option and modeled the channel with two slits to match the experimental set-up.

In the test experiments, we used two standard samples: An Al2O3 powder sample and
a vanadium sample. The instrument definitions use either of these samples of the correct
size. Both samples are chosen to focus on the opening aperture of collimator 2 (the one
between the sample and the analyser). Two slits, one before and one after the sample, are
in the instrument definition set to the opening values which were used in the experiments.

The analyser of the spectrometer is flat and made from pyrolytic graphite. It is placed
between an entry and an exit channel, the latter leading to a single detector. All this has
been copied into the instrument definition, where the graphite mosaicity has been set to
45’.

On the spectrometer, Soller collimators may be inserted at three positions: Between
monochromator and sample, between sample and analyser, and between analyser and
detector. In our instrument definition, we have used 30’, 28’, and 67’ collimators on these
three positions, respectively.

An illustration of the TAS1 instrument is shown in figure 12.3. Test results and data
from the real spectrometer are shown in Appendix 12.2.1.

12.2.1 Simulated and measured resolution of TAS1

In order to test the McStas package on a qualitative level, we have performed a very
detailed simulation of the conventional triple axis spectrometer TAS1, Risø. The mea-
surement series constitutes a complete alignment of the spectrometer, using the direct
beam and scattering from V and Al2O3 samples at an incoming energy of 20.0 meV, using

68 Risø–R–1xyz(EN)

Source

Slits

Focusing
monochromator

Slits

Sample

Collimator 2

Analyser

Collimator 3 Detector
Collimator 1

Slits

Figure 12.3: A sketch of the TAS1 instrument.

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

2

4

6

8

10

12
x 10

4

2T [deg]

in
te

ns
ity

2T scan on 1 mm slit

Figure 12.4: Scans of 2θs in the direct beam with 1 mm slit on the sample position. ”×”:
measurements, ”o”: simulations Collimations: open-30’-open-open.

the second order scattering from the monochromator. In the instrument definitions, we
have used all available information about the spectrometer. However, the mosaicities of
the monochromator and analyser are set to 45’ in stead of the quoted 30’, since we from
our analysis believe this to be much closer to the truth.

In these simulations, we have tried to reproduce every alignment scan with respect to
position and width of the peaks, whereas we have not tried to compare absolute intensities.
Below, we show a few comparisons of the simulations and the measurements.

Figure 12.4 shows a scan of 2θs on the collimated direct beam in two-axis mode. A
1 mm slit is placed on the sample position. Both the measured width and non-Gaussian
peak shape are well reproduced by the McStas simulations.

In contrast, a simulated 2θa scan in triple-axis mode on a V-sample showed a surprising
offset from zero, see Figure 12.5. However, a simulation with a PSD on the sample position
showed that the beam center was 1.5 mm off from the center of the sample, and this was

Risø–R–1xyz(EN) 69

−4 −3 −2 −1 0 1 2 3 4
−0.5

0

0.5

1

1.5

2

2.5

3
x 10

−6

2TA [deg]

in
te

ns
ity

Figure 12.5: First simulated 2θa scan on a vanadium sample. Collimations: open-30’-28’-
open.

important since the beam was no wider than the sample itself. A subsequent centering
of the beam resulted in a nice agreement between simulation and measurements. For a
comparison on a slightly different instrument (analyser-detector collimator inserted), see
Figure 12.6.

The result of a 2θs scan on an Al2O3 powder sample in two-axis mode is shown in
Figure 12.7. Both for the scan in focusing mode (+ − +) and for the one in defocusing
mode (+ + +) (not shown), the agreement between simulation and experiment is excellent.

As a final result, we present a scan of the energy transfer Ea = ~ω on a V-sample. The
data are shown in Figure 12.8.

12.3 The time-of-flight spectrometer PRISMA

In order to test the time-of-flight aspect of McStas, we have in collaboration with Mark
Hagen, ISIS, written a simple simulation of a time-of-flight instrument loosely based on
the ISIS spectrometer PRISMA. The simulation was used to investigate the effect of using
a RITA-style analyser instead of the normal PRISMA backend.

We have used the simple time-of-flight source Tof source. The neutrons pass through
a beam channel and scatter off from a vanadium sample, pass through a collimator on
to the analyser. The RITA-style analyser consists of seven analyser crystals that can be
rotated independently around a vertical axis. After the analysers we have placed a PSD
and a time-of-flight detector.

To illustrate some of the things that can be done in a simulation as opposed to a real-life
experiment, this example instrument further discriminates between the scattering off each
individual analyser crystal when the neutron hits the detector. The analyser component
is modified so that a global variable neu_color keeps track of which crystal scatters the

70 Risø–R–1xyz(EN)

−3 −2 −1 0 1 2 3
0

100

200

300

400

500

600

700

2TA [deg]

in
te

ns
ity

Figure 12.6: Corrected 2θa scan on a V-sample. Collimations: open-30’-28’-67’. ”×”:
measurements, ”o”: simulations.

32 32.5 33 33.5 34 34.5 35 35.5
100

200

300

400

500

600

700

800

2T [deg]

in
te

ns
ity

Figure 12.7: 2θs scans on Al2O3 in two-axis, focusing mode. Collimations: open-30’-
28’-67’. ”×”: measurements, ”o”: simulations. A constant background is added to the
simulated data.

Risø–R–1xyz(EN) 71

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

EA [meV]

in
te

ns
ity

Figure 12.8: Scans of the analyser energy on a V-sample. Collimations: open-30’-28’-67’.
”×”: measurements, ”o”: simulations.

neutron. The detector component is then modified to construct seven different time-of-
flight histograms, one for each crystal (see the source code for the instrument for details).
One way to think of this is that the analyser blades paint a color on each neutron which
is then observed in the detector. An illustration of the instrument is shown in figure 12.9.
Test results are shown in Appendix 12.3.1.

7-blade
analyser

Collimator

Moderator

Slit Slit

Monitor

Slit

Sample

PSD
Detector

Figure 12.9: A sketch of the PRISMA instrument.

12.3.1 Simple spectra from the PRISMA instrument

A plot from the detector in the PRISMA simulation is shown in Figure 12.10. These
results were obtained with each analyser blade rotated one degree relative to the previous
one. The separation of the spectra of the different analyser blades is caused by different

72 Risø–R–1xyz(EN)

5500 6000 6500 7000 7500
0

1

2

3

4

5

6

7
x 10

−9

time [usec]

In
te

ns
ity

PRISMA with RITA backend

Figure 12.10: Test result from PRISMA instrument using “coloured neutrons”. Each
graph shows the neutrons scattered from one analyser blade.

energy of scattered neutrons and different flight path length from source to detector. We
have not performed any quantitative analysis of the data at this time.

Risø–R–1xyz(EN) 73

Appendix A

Libraries and conversion constants

The McStas Library contains a number of built-in functions and conversion constants
which are useful when constructing components. These are stored in the share directory
of the MCSTAS library.

Within these functions, the ’Run-time’ part is available for all component/instrument
descriptions. The other parts (see table ??) are dynamic, that is they are not pre-loaded,
but only imported once when a component requests it using the %includeMcStas keyword.
For instance, within a component C code block, (usually SHARE or DECLARE):

%include "read_table-lib"

will include the ’read table-lib.h’ file, and the ’read table-lib.c’ (unless the --no-runtime

option is used with mcstas). Similarly,

%include "read_table-lib.h"

will only include the ’read table-lib.h’. The library embedding is done only once for
all components (like the SHARE section). For an example of implementation, see the
Res monitor component.

Here, we present a short list of both each of the library contents and the run-time
features.

A.1 Run-time calls and functions

Here we list a number of preprogrammed macros which may ease the task of writing
component and instrument definitions.

A.1.1 Neutron propagation

• ABSORB. This macro issues an order to the overall McStas simulator to interrupt
the simulation of the current neutron history and to start a new one.

• PROP Z0. Propagates the neutron to the z = 0 plane, by adjusting (x, y, z) and t.
If the neutron velocity points away from the z = 0 plane, the neutron is absorbed. If
component is centered, in order to avoid the neutron to be propagated there, use the
_intersect functions to determine intersection time(s), and then a PROP_DT call.

74 Risø–R–1xyz(EN)

• PROP DT(dt). Propagates the neutron through the time interval dt, adjusting
(x, y, z) and t.

• PROP GRAV DT(dt,Ax,Ay,Az). Like PROP DT, but it also includes gravity
using the acceleration (Ax,Ay,Az). In addition, to adjusting (x, y, z) and t also
(vx, vy, vz) is modified.

• SCATTER. This macro is used to denote a scattering event inside a component, see
section ??. It should be used e.g to indicate that a component has ’done something’
(sctattered or detected). This does not affect the simulation at all, and is mainly
used by the MCDISPLAY section and the GROUP modifier (see ?? and ??). See also the
SCATTERED variable (below).

A.1.2 Coordinate and component variable retrieval

• MC GETPAR(). This may be used in the finally section of an instrument defini-
tion to reference the output parameters of a component. See page ?? for details.

• NAME CURRENT COMP gives the name of the current component as a string.

• POS A CURRENT COMP gives the absolute position of the current compo-
nent. A component of the vector is referred to as POS A CURRENT COMP.i where
i is x, y or z.

• ROT A CURRENT COMP and ROT R CURRENT COMP give the ori-
entation of the current component as rotation matrices (absolute orientation and
the orientation relative to the previous component, respectively). A component of a
rotation matrice is referred to as ROT A CURRENT COMP[m][n], where m and n
are 0, 1, or 2.

• POS A COMP(comp) gives the absolute position of the component with the name
comp. Note that comp is not given as a string. A component of the vector is referred
to as POS A COMP(comp).i where i is x, y or z.

• ROT A COMP(comp) and ROT R COMP(comp) give the orientation of the
component comp as rotation matrices (absolute orientation and the orientation rela-
tive to its previous component, respectively). Note that comp is not given as a string.
A component of a rotation matrice is referred to as ROT A COMP(comp)[m][n],
where m and n are 0, 1, or 2.

• INDEX CURRENT COMP is the number (index) of the current component
(starting from 1).

• POS A COMP INDEX(index) is the absolute position of component index.
POS A COMP INDEX (INDEX CURRENT COMP) is the same as
POS A CURRENT COMP. You may use POS A COMP INDEX
(INDEX CURRENT COMP+1) to make, for instance, your component access the
position of the next component (this is usefull for automatic targeting). A component
of the vector is referred to as

Risø–R–1xyz(EN) 75

POS A COMP INDEX(index).i where i is x, y or z. POS R COMP INDEX
works the same, but with relative coordinates.

• STORE NEUTRON(index, x, y, z, vx, vy, vz, t, sx, sy, sz, p) stores the current neu-
tron state in the trace-history table, in local coordinate system. index is usually IN-
DEX CURRENT COMP. This is automatically done when entering each component
of an instrument.

• RESTORE NEUTRON(index, x, y, z, vx, vy, vz, t, sx, sy, sz, p) restores the neu-
tron state to the one at the input of the component index. To ignore a component
effect, use RESTORE NEUTRON (INDEX CURRENT COMP,
x, y, z, vx, vy, vz, t, sx, sy, sz, p) at the end of its TRACE section, or in its EXTEND
section. These neutron states are in the local component coordinate systems.

• SCATTERED is a variable set to 0 when entering a component, which is incre-
mented each time a SCATTER event occurs. This may be used in the EXTEND sec-
tions (always executed when existing) to branch action depending if the component
acted or not on the current neutron.

• extend list(n, &arr, &len, elemsize). Given an array arr with len elements each of
size elemsize, make sure that the array is big enough to hold at least n elements, by
extending arr and len if necessary. Typically used when reading a list of numbers
from a data file when the length of the file is not known in advance.

• mcset ncount(n). Sets the number of neutron histories to simulate to n.

• mcget ncount(). Returns the number of neutron histories to simulate (usually set
by option -n).

• mcget run num(). Returns the number of neutron histories that have been simu-
lated until now.

A.1.3 Coordinate transformations

• coords set(x, y, z) returns a Coord structure (like POS A CURRENT COMP) with
x, y and z members.

• coords get(P, &x, &y, &z) copies the x, y and z members of the Coord structure
P into x, y, z variables.

• coords add(a, b), coords sub(a, b), coords neg(a) enable to operate on coordi-
nates, and return the resulting Coord structure.

• rot set rotation(Rotation t, φx, φy, φz) Get transformation for rotation first φx

around x axis, then φy around y, then φz around z. t should be a ’Rotation’ ([3][3]
’double’ matrix).

• rot mul(Rotation t1, Rotation t2, Rotation t3) performs t3 = t1.t2.

• rot copy(Rotation dest, Rotation src) performs dest = src for Rotation arrays.

76 Risø–R–1xyz(EN)

• rot transpose(Rotation src, Rotation dest) performs dest = srct.

• rot apply(Rotation t, Coords a) returns a Coord structure which is t.a

A.1.4 Mathematical routines

• NORM(x, y, z). Normalizes the vector (x, y, z) to have length 1.

• scalar prod(ax, ay, az, bx, by, bz). Returns the scalar product of the two vectors
(ax, ay, az) and (bx, by, bz).

• vecprod(ax, ay, az, bx, by, bz, cx, cy, cz). Sets (ax, ay, az) equal to the vector product
(bx, by, bz) × (cx, cy, cz).

• rotate(x, y, z, vx, vy, vz, ϕ, ax, ay, az). Set (x, y, z) to the result of rotating the vector
(vx, vy, vz) the angle ϕ (in radians) around the vector (ax, ay, az).

• normal vec(&nx, &ny, &nz, x, y, z). Computes a unit vector (nx, ny, nz) normal
to the vector (x, y, z).

A.1.5 Output from detectors

• DETECTOR OUT 0D(...). Used to output the results from a single detector.
The name of the detector is output together with the simulated intensity and es-
timated statistical error. The output is produced in a format that can be read by
McStas front-end programs. See section ?? for details.

• DETECTOR OUT 1D(...). Used to output the results from a one-dimentional
detector. See section ?? for details.

• DETECTOR OUT 2D(...). Used to output the results from a two-dimentional
detector. See section ?? for details.

• DETECTOR OUT 3D(...). Used to output the results from a three-dimentional
detector. Arguments are the same as in DETECTOR OUT 2D, but with the addi-
tional z axis (the signal). Resulting data files are treated as 2D data, but the 3rd
dimension is specified in the type field.

• mcheader out(FILE *f,char *parent, int m, int n, int p, char *xlabel, char *ylabel,
char *zlabel, char *title, char *xvar, char *yvar, char *zvar, double x1, double x2,
double y1, double y2, double z1, double z2, char *filename) appends a header file
using the current data format setting. Signification of parameters may be found in
section ??. Please contact the authors in case of perplexity.

• mcinfo simulation(FILE *f, mcformat, char *pre, char *name) is used to append
the simulation parameters into file f (see for instance the Res monitor component).
Internal variable mcformat should be used as specified. Please contact the authors
in case of perplexity.

Risø–R–1xyz(EN) 77

A.1.6 Ray-geometry intersections

• box intersect(&t1, &t2, x, y, z, vx, vy, vz, dx, dy, dz). Calculates the (0, 1, or
2) intersections between the neutron path and a box of dimensions dx, dy, and dz ,
centered at the origin for a neutron with the parameters (x, y, z, vx, vy, vz). The
times of intersection are returned in the variables t1 and t2, with t1 < t2. In the
case of less than two intersections, t1 (and possibly t2) are set to zero. The function
returns true if the neutron intersects the box, false otherwise.

• cylinder intersect(&t1, &t2, x, y, z, vx, vy, vz, r, h). Similar to box intersect,
but using a cylinder of height h and radius r, centered at the origin.

• sphere intersect(&t1, &t2, x, y, z, vx, vy, vz, r). Similar to box intersect, but
using a sphere of radius r.

A.1.7 Random numbers

• rand01(). Returns a random number distributed uniformly between 0 and 1.

• randnorm(). Returns a random number from a normal distribution centered around
0 and with σ = 1. The algorithm used to get the normal distribution is explained
in [12], chapter 7.

• randpm1(). Returns a random number distributed uniformly between -1 and 1.

• randvec target circle(&vx, &vy, &vz, &dΩ, aimx, aimy, aimz, rf). Generates a
random vector (vx, vy, vz), of the same length as (aimx, aimy, aimz), which is targeted
at a disk centered at (aimx, aimy, aimz) with radius rf (in meters), and perpendicular
to the aim vector.. All directions that intersect the sphere are chosen with equal
probability. The solid angle of the sphere as seen from the position of the neutron is
returned in dΩ. This routine was previously called randvec target sphere (which
still works).

• randvec target rect angular(&vx, &vy, &vz, &dΩ, aimx, aimy, aimz ,height, width,Rot)
does the same as randvec target circle but targetting at a rectangle with angular
dimensions height and width (in radians, not in degrees as other angles). The ro-
tation matrix Rot is the coordinate system orientation in the absolute frame, usually
ROT A CURRENT COMP.

• randvec target rect(&vx, &vy, &vz, &dΩ, aimx, aimy, aimz,height, width,Rot) is
the same as randvec target rect angular but height and width dimensions are given
in meters. This function is useful to target at a guide entry window.

A.2 Reading a data file into a vector/matrix (Table input)

The read_table-lib provides functionalities for reading text (and binary) data files.
To use this library, add a %include "read_table-lib" in your component definition
DECLARE or SHARE section. Available functions are:

78 Risø–R–1xyz(EN)

• Table Init(&Table) and Table Free(&Table) initialize and free allocated memory
blocks

• Table Read(&Table, filename, block) reads numerical block number block (0 for
all) data from text file filename into Table. The block number changes when
the numerical data changes its size, or a comment is encoutered (lines starting by
’# ; % /’). If the data could not be read, then Table.data is NULL and Table.rows =
0. You may then try to read it using Table Read Offset Binary.

• Table Rebin(&Table) rebins Table rows with increasing, evenly spaced first column
(index 0), e.g. before using Table Value.

• Table Read Offset(&Table, filename, block, &offset, nrows) does the same as
Table Read except that it starts at offset offset (0 means begining of file) and reads
nrows lines (0 for all). The offset is returned as the final offset reached after reading
the nrows lines.

• Table Read Offset Binary(&Table, filename, type, block, &offset, nrows, ncolumns)
does the same as Table Read Offset, but also specifies the type of the file (may be
”float” or ”double”), the number nrows of rows to read, each of them having ncolumns

elements. No text header should be present in the file.

• Table Info(Table) print information about the table Table.

• Table Index(Table,m, n) reads the Table[m][n] element.

• Table Value(Table, x, n) looks for the closest x value in the first column (index 0),
and extracts in this row the n-th element (starting from 0). The first column is thus
the ’x’ axis for the data.

The format of text files is free. Lines starting by ’# ; % /’ characters are considered to
be comments. Data blocks are vectors and matrices. Block numbers are counted starting
from 1, and changing when a comment is found, or the column number changes. For
instance, the file ’MCSTAS/data/BeO.trm’ (Transmission of a Berylium filter) looks like:

BeO transmission, as measured on IN12

Thickness: 0.05 [m]

[k(Angs-1) Transmission (0-1)]

wavevector multiply

1.0500 0.74441

1.0750 0.76727

1.1000 0.80680

...

Binary files should be of type ”float” (i.e. REAL*32) and ”double” (i.e. REAL*64), and
should not contain text header lines. These files are plateform dependent (little or big
endian).

The filename is first searched into the current directory (and all user additional lo-
cations specified using the -I option, see section ??), and if not found, in the data sub-
directory of the MCSTAS library location. This way, you do not need to have local copies
of the McStas Library Data files (see table ??).

Risø–R–1xyz(EN) 79

A usage example for this library part may be:

t_Table rTable; % declares a t_Table structure

char file="BeO.trm"; % a file name

double x,y;

Table_Init(&rTable); % initialize the table to empty state

Table_Read(&rTable, file, 1); % reads the first numerical block

Table_Info(rTable); % display table informations

...

x = Table_Index(rTable, 2,5); % reads the 3rd row, 6th column element

% of the table. Indexes start at zero in C.

y = Table_Value(rTable, 1.45,1); % looks for value 1.45 in 1st column (x axis)

% and extract 2nd column value of that row

Table_Free(&rTable); % free allocated memory for table

Additionally, if the block number (3rd) argument of Table Read is 0, all blocks will
be catenated. The Table Value function assumes that the ’x’ axis is the first column
(index 0). Other functions are used the same way with a few additional parameters, e.g.
specifying an offset for reading files, or reading binary data.

You may look into, for instance, the Monochromator curved component, or the Vir-
tual input component for other implementation examples.

A.3 Monitor nD Library

This library gathers a few functions used by a set of monitors e.g. Monitor nD, Res monitor,
Virtual output, It may monitor any kind of data, create the data files, and may dis-
play many geometries (for mcdisplay). Refer to these components for implementation
examples, and ask the authors for more details.

A.4 Adaptative importance sampling Library

This library is currently only used by the components Source adapt and Adapt check. It
performs adaptative importance sampling of neutrons for simulation efficiency optimiza-
tion. Refer to these components for implementation examples, and ask the authors for
more details.

A.5 Vitess import/export Library

This library is used by Vitess input, Vitess output components, as well as the mcstas2vitess
utility (see section ??). Refer to these components for implementation examples, and ask
the authors for more details.

80 Risø–R–1xyz(EN)

A.6 Constants for unit conversion etc.

The following predefined constants are useful for conversion between units

Name Value Conversion from Conversion to

DEG2RAD 2π/360 Degrees radians
RAD2DEG 360/(2π) Radians degrees
MIN2RAD 2π/(360 · 60) Minutes of arc radians
RAD2MIN (360 · 60)/(2π) Radians minutes of arc
V2K 1010 ·mN/~ Velocity (m/s) k-vector (Å−1)
K2V 10−10 · ~/mN k-vector (Å−1) Velocity (m/s)
VS2E mN/(2e) Velocity squared (m2 s−2) Neutron energy (meV)

SE2V
√

2e/mN Square root of neutron en-
ergy (meV1/2)

Velocity (m/s)

FWHM2RMS 1/
√

8 log(2) Full width half maximum Root mean square
(standard deviation)

RMS2FWHM
√

8 log(2) Root mean square (stan-
dard deviation)

Full width half maxi-
mum

MNEUTRON 1.67492E − 27kg Neutron mass
HBAR 1.05459E − 34Js Planck constant
PI 3.14159265358979323846 π

Further, we have defined the constants PI= π and HBAR= ~.

Risø–R–1xyz(EN) 81

Appendix B

The McStas terminology

This is a short explanation of phrases and terms which have a specific meaning within
McStas. We have tried to keep the list as short as possible with the risk that the reader
may occasionally miss an explanation. In this case, you are more than welcome to contact
the authors.

• Arm A generic McStas component which defines a frame of reference for other
components.

• Component One unit (e.g. optical element) in a neutron spectrometer.

• Definition parameter An input parameter for a component. For example the
radius of a sample component or the divergence of a collimator.

• Input parameter For a component, either a definition parameter or a setting
parameter. These parameters are supplied by the user to define the characteristics of
the particular instance of the component definition. For an instrument, a parameter
that can be changed at simulation run-time.

• Instrument An assembly of McStas components defining a neutron spectrometer.

• McStas Monte Carlo Simulation of Triple Axis Spectrometers (the name of this
project).

• Output parameter An output parameter for a component. For example the counts
in a monitor. An output parameter may be accessed from the instrument in which
the component is used using MC_GETPAR.

• Run-time C code, contained in the files mcstas-r.c and mcstas-r.h included in
the McStas distribution, that declare functions and variables used by the generated
simulations.

• Setting parameter Similar to a definition parameter, but with the restriction that
the value of the parameter must be a number.

82 Risø–R–1xyz(EN)

Bibliography

[1] K. Lefmann and K. Nielsen. Neutron News, 10, 20–23, 1999.

[2] Kim Lefmann Per-Olof Astrand Marc Hagen Peter Willendrup, Emmanuel Farhi and
Kristian Nielsen. User and Programmers Guide to the Neutron Ray-Tracing Package
McStas, Version 1.8. Risoe Report, 2004.

[3] See http://neutron.risoe.dk/mcstas/.

[4] See http://strider.lansce.lanl.gov/NISP/Welcome.html.

[5] T. E. Mason, K. N. Clausen, G. Aeppli, D. F. McMorrow, and J. K. Kjems. Can. J.
Phys., 73, 697–702, 1995.

[6] K. N. Clausen, D. F. McMorrow, K. Lefmann, G. Aeppli, T. E. Mason, A. Schröder,
M. Issikii, M. Nohara, and H. Takagi. Physica B, 241-243, 50–55, 1998.

[7] K. Lefmann, D. F. McMorrow, H. M. Rønnow, K. Nielsen, K. N. Clausen, B. Lake,
and G. Aeppli. Physica B, 283, 343–354, 2000.

[8] See http://www.sns.gov/.

[9] See http://www.ess-europe.de.

[10] See http://www.hmi.de/projects/ess/vitess/.

[11] A. Abrahamsen, N. B. Christensen, and E. Lauridsen. McStas simulations of the TAS1
spectrometer. Student’s report, Niels Bohr Institute, University of Copenhagen, 1998.

[12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C. Cambridge University Press, 1986.

Risø–R–1xyz(EN) 83

Index

Components, 11

Data format, 10

Environment variable
BROWSER, 15

MCSTAS, 15, 72, 77
MCSTAS FORMAT, 10

Installing, 13

Kernel, 9
Keyword

%include, 72

DECLARE, 10
EXTEND, 9, 73

FINALLY, 10
GROUP, 10, 73

MCDISPLAY, 73
PREVIOUS, 10

SAVE, 10

SHARE, 10, 72

Library, 72
adapt tree-lib, 78

Components, 11
contrib, 11

data, 11, 77
doc, 11

misc, 11

monitors, 11
obsolete, 11

optics, 11, 12
samples, 12

share, 12, 72
sources, 12

Instruments, 11
mcstas-r, see Library/Run-time

monitor nd-lib, 78

read table-lib (Read Table), 76
Run-time, 10, 72

ABSORB, 72
DETECTOR OUT, 10
MC GETPAR, 73
NAME CURRENT COMP, 73
POS A COMP, 73
POS A CURRENT COMP, 73
PROP DT, 72
PROP GRAV DT, 72
PROP Z0, 72
randvec target rect, 11
RESTORE NEUTRON, 73
ROT A COMP, 73

ROT A CURRENT COMP, 73
SCATTER, 72
SCATTERED, 73
STORE NEUTRON, 73

Shared, see Library/Components/share
vitess-lib, 78

Parameters
Instruments, 10
Optional, default value, 9
Setting, 10

Signal handler
USR1 signal, 11
USR2 signal, 10

Sources, 16
Source flat, 16
Source flat lambda, 17
Source flux, 17

Tools, 13
IDL, 13
Matlab, 13
mcconvert, 14

84 Risø–R–1xyz(EN)

mcdoc, 14, 15
mcplot, 11, 14
mcresplot, 14
mcrun, 14
mcstas2vitess, 14, 78
Perl libraries, 13
Scilab, 13

Risø–R–1xyz(EN) 85

Bibliographic Data Sheet Risø–R–1xyz(EN)

Title and author(s)

Component Manual to the Neutron Ray-Tracing Package McStas, Version 1.8

Peter Kjær Willendrup, Kim Lefmann, Emmanuel Farhi

ISBN

87–550–2929–9; 87–550–2930–2 (Internet)

ISSN

0106–2840

Dept. or group

Materials Research Department

Date

May 15th, 2003

Groups own reg. number(s)

—

Project/contract No.

—

Pages

86

Tables

2

Illustrations

15

References

10

Abstract (Max. 2000 char.)

The software package McStas is a tool for carrying out Monte Carlo ray-tracing simulations
of neutron scattering instruments with high complexity and precision. The simulations can
compute all aspects of the performance of instruments and can thus be used to optimize the
use of existing equipment, design new instrumentation, and carry out virtual experiments.
McStas is based on a unique design where an automatic compilation process translates
high-level textual instrument descriptions into efficient ANSI-C code. This design makes it
simple to set up typical simulations and also gives essentially unlimited freedom to handle
more unusual cases.
This report constitutes the reference manual for McStas, and, together with the manual
for the McStas components, it contains full documentation of all aspects of the program. It
covers the various ways to compile and run simulations, a description of the meta-language
used to define simulations, and some example simulations performed with the program.

Descriptors

Neutron Instrumentation; Monte Carlo Simulation; Software

Available on request from:
Information Service Department, Risø National Laboratory
(Afdelingen for Informationsservice, Forskningscenter Risø)
P.O. Box 49, DK–4000 Roskilde, Denmark
Phone +45 4677 4004, Telefax +45 4677 4013

